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Highlights
Biodiversity affects ecosystem
functioning.

Biodiversity may decrease or increase
parasitism.

Parasites impair individual hosts and
affect their role in the ecosystem.

Parasitism, in common with competi-
tion, facilitation, and predation, could
regulate BD-EF relationships.

Parasitism affects host [216_TD$DIFF]phenotypes,
including changes to host morphol-
ogy, behavior, and physiology, which
might increase intra- and interspecific
functional diversity.

The effects of parasitism on host abun-
dance and phenotypes, and on inter-
actions between hosts and the
remaining community, all have poten-
tial to alter community structure and
BD-EF relationships.

Global change could facilitate the
spread of invasive parasites, and alter
the existing dynamics between para-
sites, communities, and ecosystems.
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Species interactions can influence ecosystem functioning by enhancing or
suppressing the activities of species that drive ecosystem processes, or by
causing changes in biodiversity. However, one important class of species
interactions – parasitism – has been little considered in biodiversity and eco-
system functioning (BD-EF) research. Parasites might increase or decrease
ecosystem processes by reducing host abundance. Parasites could also
increase trait diversity by suppressing dominant species or by increasing
within-host trait diversity. These different mechanisms by which parasites
might affect ecosystem function pose challenges in predicting their net effects.
Nonetheless, given the ubiquity of parasites, we propose that parasite–host
interactions should be incorporated into the BD-EF framework.

Incorporating Parasitism into the BD-EF framework
How might biodiversity (see Glossary), ecosystem functioning, and the relationships
between biodiversity and ecosystem functioning respond to parasitism? Parasites are ubiq-
uitous organisms with the potential to regulate and limit host abundance [1] as well as the
ecosystem processes that such hosts influence [2,3]. For instance, Preston et al. [2] reviewed
how parasites might reduce herbivore abundance [4,5], and alter plant productivity and edibility
[6]. Similarly, Lafferty and Kuris [7] considered how parasites that manipulate behavior could
help predators to control herbivores such as moose, create a new habitat (e.g., by stranding
infected cockles) [8], or generate food subsidies for trout by inducing suicide in crickets [9]. In
another case, ungulate population regulation by rinderpest resulted in increased fire events and
decreased tree biomass, with negative effects on carbon storage [10]. These examples indicate
that the ecosystem-level effects of parasitism [217_TD$DIFF]might arise from impacts on functionally signifi-
cant hosts via trophic cascade pathways [11]. Parasite impacts on host-derived functions are
likely pervasive, although compensation by competing species could mitigate the effects of
host suppression at the ecosystem level. In this regard, parasites are no different from other
biological pressures [218_TD$DIFF], given any factor altering the activity or abundance of functionally important
species should also affect ecosystem function.

In addition to altering ecosystem functioning through direct effects on host abundance,
parasites could also affect ecosystem functioning through their effects on biodiversity. BD-
EF research postulates that effects of diversity on ecosystem functioning depend on the types
and relative abundances of species functional traits that are present in a community [12,13] and
on how interactions among species influence trait expression [14]. For example, diet diversity in
animal communities results in more efficient nutrient and energy transfer to higher trophic levels
[15]. Plant biomass production [16,17], nutrient and energy cycling [18], and nutrient uptake
from freshwaters [19] are often more efficient with increasing biodiversity, especially if
functional trait diversity also increases [20]. Parasites have the potential both to decrease
or increase biodiversity. For example, parasites might decrease functional diversity by
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Glossary
Biodiversity: the diversity of
species, traits, and genes, and even
habitats, within and among
ecosystems in a region.
Complementary resource use:
niche differentiation arising from
differences in how taxa exploit a
common resource, leading to more
efficient use of that resource overall.
Disease-dilution effect: a higher
diversity of hosts has the potential to
dilute the transmission of host-
specific diseases.
Ecosystem functioning: a set of
ecological processes that arise from
interactions among species and the
environment. Examples of ecological
processes underpinning ecosystem
functioning include the cycling of
nutrients assisted by detritivores or
scavengers, and biomass accrual of
consumer and primary producer
communities, which are all regulated
not only by the environment (e.g.,
nutrient availability) but also by the
activities of multiple species, and
interactions among them.
Facilitation: occurs when the
activities of one species enhance the
activities of a second species.
Functional trait diversity: an index
summarizing the diversity of
functional traits in a community.
Functional traits: phenotypic
eliminating certain traits or species, or by increasing trait similarity within the community. On the
other hand, the effects of parasites on infected host phenotypes might increase functional
diversity by generating novel traits or by decreasing trait similarity among species. The complex
interactions and feedbacks between parasites and biodiversity complicate prediction of the
outcomes for BD-EF relationships.

Mechanisms that can drive diversity effects on functioning include selection effects [21],
facilitation [22,23], and niche differentiation [219_TD$DIFF](including complementary resource use) [24],
which are often linked to positive diversity effects. Parasitesmight add an additional mechanism
resulting in positive net diversity effects. In cases where host-specific diseases are transmitted
by generalist vectors, communities with low diversity could support more disease transmission
than those with high diversity [25,26], although the generality of this has been questioned
[27,28]. Given that infectious diseases might decrease host productivity, reduced disease
transmission in high-diversity communities could explain some positive BD-EF relationships
[29,30] (Figure 1A). Similarly, if higher host diversity results in lower host densities, high host
diversity could dilute the prevalence of host-specific parasites, particularly those with complex
life cycles [31,32].

Parasitism has largely been neglected in BD-EF research [33], which has instead focused on
interactions occurring within trophic levels, especially among primary producers [220_TD$DIFF][12] and
consumers [13,22], with some exceptions [15,34]. Parasites might affect BD-EF relationships
by altering community diversity or by modifying trait identity and increasing trait diversity even
within a host species. Indeed, parasite-mediated increases in intra- or interspecific functional
diversity could lead to increased resource consumption, which is precisely the opposite effect
that would be expected for host suppression under parasite-induced trophic cascade effects
[11]. Interactions among parasites within a host [35] might also change the outcome of BD-EF
relationships. Clearly, there is a need to incorporate parasitism more explicitly into the BD-EF
framework (Box 1).
characteristics which regulate the
influences of species on ecosystem
functioning. They are often
morphological, physiological,
behavioral, or ecological.
Parasite: an organism that lives and
feeds on a living host, often affecting
its fitness and/or phenotype.
Pathogens are here considered as a
special case of microparasites.
Selection effects: the increased
likelihood that a more diverse
community will include particular
species that strongly regulate
ecosystem process rates in their own
right.
Trait-mediated effects: the non-
lethal effect of a predator or parasite
on the attributes of the prey or host,
which can affect population
dynamics and species interactions
without affecting species density.
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Figure 1. Parasitism as a Mechanism Altering Biodiversity and Ecosystem Functioning (BD-EF) Relation-
ships. (A) Parasitism could be a mechanism behind positive diversity effects on functioning if high host diversity dilutes
diseases in the community. (B) Parasite effects on trait abundance can affect ecosystem functioning if the trait that is
reduced is a key driver of ecosystem functioning. This effect will also depend on the distribution of traits in a community
because communities with more evenly distributed traits might compensate better for the loss of other important traits.

2 Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy



TREE 2355 No. of Pages 9

Box 1. Estimating Relative Change in Ecosystem Functioning as a Result of Parasitism Effects on
BD-EF Relationships

Although the potential for parasitism to regulate ecosystem functioning has been emphasized previously [33], there are
currently no published assessments of how parasites might affect the outcome of BD-EF relationships. We combine
here two independent studies that analyzed the effects of the same freshwater invertebrate detritivore species,
Gammarus fossarum, on the same ecological process, leaf decomposition [15,85], to illustrate the potential effect
of parasitism in altering BD-EF relationships.

In Jabiol et al. [15], leaf mass loss in a model freshwater food web was highest when the diversity of three trophic levels
(fungal decomposers, invertebrate detritivores, and predatory fish, simulated using fish kairomones) was maximal.
Specifically, single-detritivore species treatments had �36% leaf-mass loss after 130 h of exposure at highest fungal
diversity and fish presence. By comparison, three-detritivore species mixtures including G. fossarum had �41% leaf-
mass loss after the same period, a small but positive diversity effect attributable to complementarity among the
detritivores. Similar three-detritivore treatments, but without fish presence, had [209_TD$DIFF]�35% leaf-mass loss, and the
difference attributable to predator presence was statistically significant.

How might parasites affect this association? The acanthocephalan parasite Pomphorhynchus tereticolli can affect
behavior and feeding rates in the G. fossarum [85]. Infected G. fossarum eat 30% less leaf mass (�0.43 compared to
�0.65 mg by mm of gammarid day�1 when uninfected) [85].

If this species was infected in the three-detritivore species treatments that included fish kairomones [15], leaf-mass loss
would have been reduced by up to�10% (assuming that the totalG. fossarum effect on leaf-mass loss equals 1/3 in the
three-species mixture). This reduction in consumption by G. fossarum could likely reduce leaf-mass loss from the
original �41% to �37%, a result close to that observed when fish were not present in the three-detritivore species
treatment and to the average single-species treatment (Figure I). Clearly, this cross-study assessment of relative change
in BD-EF attributable to parasitism should be taken with care, given the different nature of the two studies, the multiple
potential interaction outcomes among the three detritivore species if one of them is infected, and the potential variability
in the response of gammarids to the parasite [85]. Nonetheless, this assessment demonstrates one of the many ways in
which parasites could affect biodiversity functioning, and also how parasites could confound interpretations from
biodiversity-functioning studies when their impacts are not accounted for. We are not suggesting [211_TD$DIFF]the referenced study
neglected parasitism; this parasite leaves a clear yellow-orangemark on the body of the amphipod that is difficult tomiss
[85]. However, parasites are harder to detect in most other species used in biodiversity-functioning studies.
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Figure I. Negative Parasite Effects on Leaf Consumption by the Detritivore Gammarus fossarum [85]
Could Affect the Outcome of a Positive BD-EF [207_TD$DIFF]Relationship [15].[208_TD$DIFF]Numbers on the three first columns (shades of
green) are from [15] and are approximations from treatments under highest microbial diversity. The last column (orange)
shows the predicted reduction in leaf-mass loss under parasite effect.
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Parasite Effects on Community Structure, Species Diversity, and Trait
Distribution
Parasites can affect biodiversity [36] and alter the taxonomic and functional structure of commu-
nities [1,37–39] by affecting host phenotype, reducing host abundance, and altering species
richnessandevenness. Forexample, the trematodeCryptocotyle linguaaffectsgrazingby its snail
host,which in turn increasesephemeralmacroalgaedominance, altering thecommunitystructure
of an intertidal macroalgal community [38]. Another trematode species predominantly infects
cockle foot tissue, decreasing its ability to bury in the sediment. Infected cockles aremore sessile,
reducing their influence on sediment bioturbation and in turn increasing the abundance and
richnessofbenthic invertebrates [40]. Parasitescanalsoaffectbiodiversityby facilitatingor limiting
species invasions [41,42], as with the acanthocephalan Pomphorhynchus laevis, which infects
both native and invasive amphipod species. However, [221_TD$DIFF]although this parasite increases the
vulnerability to predation of the native host species by inducing positive phototaxis, such an
effect is not seen on the invading species [43]. Opposing effects of parasitism on native and
invasive species are found in several aquatic and terrestrial species [44].

Diversity might also decline if dominant species are tolerant to a parasite that spills over to
intolerant competitors [45]. On the other hand, by reducing host abundance, parasites might
alleviate competition [41] and thus favor otherwise rare species. More specifically, parasites can
promote coexistence by regulating relative abundance among competitors (density-dependent
transmission that creates an advantage for rarity) or reducing fitness differences (e.g., penaliz-
ing the performance of superior species) [36], which is consistent with the Janzen–Connell
hypothesis for tree diversity in tropical forests [46,47]. In any given system there are likely to be
several parasite species, some promoting competitive exclusion, others promoting coexis-
tence, and others having little effect.

The potential and documented effects of parasites on ecosystem functioning might be best
understood by considering how their impacts on host phenotype and species composition alter
functional trait distributionwithin communities. In general, communities dominated by a few traits
are expected to be associated with lower [222_TD$DIFF]processing rates, whereas communities with more
evenly distributed traits areassociatedwithhigher processing rates [48,49]. Thus, declines in host
population abundances following parasite infections might reduce important traits if no other
similar species compensates for this loss. However, if parasites favor complementary traits within
an assemblage, then, assuming no decrease in host abundance, parasites could increase some
ecosystem processes through positive effects on trait distribution (Figure 1B).

Parasite Effects on Trait Composition
Parasites alter host physiology, morphology, fecundity, and behavior. For example, infected
hosts might have different nutrient requirements or metabolic rates. Furthermore, parasites
might alter host movement and habitat preferences. These effects add functional diversity to a
community by (i) magnifying differences between host and non-host species, and (ii) generating
differences between infected and uninfected individuals within a host species (Figure 2).
Parasite effects on functioning that arise from changes in trait composition are often termed
trait-mediated (indirect) effects. We indicate below three mechanisms by which parasites
might affect trait composition with potential consequences for functional diversity and thus for
BD-EF relationships.

Body Size and Metabolism
Parasites can alter host population size structure by affecting host growth rate and host body
size. Although most parasites stunt growth, some parasites induce gigantism, as with the snail
4 Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy
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Figure 2. Parasites May Alter Intra- and Interspecific Trait Diversity. (A) Parasitism can affect the phenotype of an individual, as indicated by . This parasite-
induced functional trait can be similar to other common traits that are already present in a population, in which case it might reduce intraspecific diversity. Parasitism can
also have a negative effect on intraspecific diversity and on ecosystem processes by removing traits key to resource processing. If the parasite-modified trait is novel or
rare, parasites can increase intraspecific diversity and trait evenness. The effect on ecosystem processeswill depend onwhether the novel trait has a positive or negative
effect in the ecosystem. (B) Parasites can also alter interspecific diversity by adding or eliminating important traits from the community. Parasites might contribute to
species (Sp.) coexistence or to species invasion by reducing the fitness of some dominant species. However, as for within-host diversity, the extent to which diversity
promotion increases ecosystem processes depends on whether other species can compensate for a suppressed dominant species.
Batillaria cumingi, whose individuals infected by the trematode Cercaria batillariae can be 20–
30% longer than uninfected individuals [50]. Effects on host body size are likely to have knock-
on effects on important ecosystem processes involving the host species, including resource
consumption and nutrient cycling. Body size can also drive ecosystem functioning and BD-EF
relationships through its effect on metabolic rate [51–53]. Allometric scaling between metabolic
rates and body size will lead small-bodied populations to have higher bulk resource processing
Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy 5
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rates than large-bodied populations [54] of the same total biomass. Parasites also respond to
scaling properties; a gram of several small parasites will have a greater metabolic effect on an
individual host than a gram of a few large parasites [55].

Nutrient and Other Resource Requirements
Most animals are homeostatic, meaning that they require nutrients in specific ratios that are
seldom matched in their resources. Often the availability of carbon (C), nitrogen (N), and
phosphorus (P) in specific ratios (N:P, C:N, and C:P) is considered to be important, given
the strong enrichment of these elements in consumers relative to the lower concentrations in
the environment [56]. A stoichiometric imbalance between chemical elements in consumers
and their diet can reduce growth and survival rates, and increase resource consumption [57],
with implications for ecosystem functioning [58].

Parasites require essential nutrients for their own growth and reproduction. However, parasites
are not always in stoichiometric balance with their hosts [59]. Energy and nutrient sequestration
by parasites can induce strong nutrient limitation in the host [60,61], affecting host growth and
survival rates [61,62]. Moreover, parasite-induced effects could be further enhanced if the host
already has a diet deficient in specific nutrients [63]. By causing or even enhancing nutrient
deficiency, parasites will affect host consumption rates or even alter host consumption
preferences [64] toward food sources containing the parasite-induced limiting nutrient. Hosts
might also seek food items that contain particular nutrients or nutrient combinations that aid
resistance to the parasite infection. The caterpillar Spodoptera exempta shows a preference for
low C:P diets that increase its survival when infected by a virus [65], and snails infected with
trematodes excrete a higher N:P ratio compared to uninfected snails [66].

Behavior
Many parasites affect host behavior [67]. Manipulative parasites can impair vertebrate host
responses to predators and shift invertebrate host microhabitat use [68]. Parasites that
manipulate top predators or foundation species can alter ecosystem functioning through
trait-mediated effects [7]. For example, nematomorph worms manipulate terrestrial crickets
to enter trout streams, which, in addition to providing food for trout, reduces predation pressure
on aquatic insects, increases algal production, and decreases litter decomposition [9]. Such
trait-mediated indirect effects due to behavioral alterations are known for insects [9], mollusks
[40], crustaceans [69], reptiles [70], fish [71], and mammals [72], and could increase host
intraspecific functional diversity [40].

Parasites can also affect host feeding behavior and preferences. Infected Littorina littorea snails
eat less algal biomass than the uninfected conspecifics [38], thereby increasing algal biomass
accrual, and the detritus-feeder isopodCaecidotea communis eats less leaf litter when infected
by Acanthocephalus tahlequahensis [69]. Sometimes these parasite-induced alterations are so
large that parasitized hosts function as a separate species. For example, the Asian mud snail B.
cumingi grows larger and moves deeper when infected by the trematode C. batillariae [50].
Instead of competing with uninfected snails, infected snails exploit a novel algal resource,
effectively akin to adding a new species to a community.

Parasites Can Directly Contribute to Productivity
Although most parasites negatively impact [223_TD$DIFF]host nutrition, some free-living infective stages are
edible food resources for non-host species. For instance, small fish will feast on trematode
cercariae [73]. Similarly, during diatom blooms in lakes, zooplankton might have little to eat, but
parasitic chytrids that kill inedible diatoms produce edible spores that can represent �50% of
6 Trends in Ecology & Evolution, Month Year, Vol. xx, No. yy
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Outstanding Questions
[227_TD$DIFF]When does parasitism increase or
decrease community functional
diversity?

[228_TD$DIFF]When does community functional
diversity increase or decrease
parasitism?

What is the importance of parasitism
relative to other species interactions
(competition, predation, facilitation) in
mediating the effects of biodiversity on
ecosystem functioning?

What are the main mechanisms by
which parasites can affect ecosystem
functioning through [229_TD$DIFF]changes in
biodiversity?

Does parasitism increase ecosystem
processes by increasing niche parti-
tioning or niche complementarity?

Does parasitism reduce ecosystem
processes by reducing host fitness?

Do positive effects of parasitism on
functional diversity help to compen-
sate for impacts on parasitized
individuals?

Are there specific types of parasitism
that show consistent positive or nega-
tive effects on BD-EF [230_TD$DIFF]relationships?

Is the parasite effect on the diversity [231_TD$DIFF]-
functioning relationship dependent on
the functional/trophic structure of the
community?

How important are the effects of para-
sitism on the stability of food web
structure and function relative to other
types of trophic (e.g., omnivory, intra-
guild predation) and non-trophic (e.g.,
commensalism) interactions?

How do the effects of parasitism on
BD-EF relationships vary with warming
and other aspects of global change?
the zooplankton diet, sustaining much secondary production despite [224_TD$DIFF]the overall lack of suitable
primary producers for food [6]. Because such parasites are common in aquatic systems, edible
parasites could drive important ecosystem processes when they convert inedible resources
into food for consumers. Hemiparasitic plants might also contribute to overall productivity by
increasing nutrient availability in the soil, despite their potential negative effect on host biomass
[74].

Parasitism and Biodiversity-Functioning Relationships under Global Change
Global change, including climate-driven changes and species introduction and extinction, have
potential to affect BD-EF at regional and global scales [75]. In particular, invasive species often
carry new parasites which can further affect the biodiversity of native organisms [42,76].
Parasites that cause disease epidemics might wipe out keystone or foundation species,
transforming the structural configuration of habitats and landscapes, and strongly impacting
[225_TD$DIFF]ecosystem functioning and services [77–79]. Climate warming might further influence the host–
parasite balance by increasing parasite development and survival rates (especially for invasive
parasites), thus facilitating disease transmission or promoting host susceptibility [80]. Biodi-
versity loss might also favor increased transmission rates [81]. Accordingly, parasites could
influence how global change alters BD-EF relationships. Indeed, the likely increasing preva-
lence of invasive parasites is an often overlooked component of global change, but one which
poses a great ecological and economic threat, as well as substantial management challenges
[78–81].

Research Directions on the Role of Parasitism for Ecosystem Functioning
Among the various mechanisms by which parasites might affect ecosystem functioning [2],
parasites have seldom been considered as agents that modify ecosystem processes through
their effects on trait diversity. Parasites increase within-host trait diversity by altering host
phenotypes, including host morphology, behavior, and stoichiometry, and they can also
increase trait diversity within a community by facilitating coexistence among competing
species. These impacts on trait diversity or distribution could then alter the ecosystem
processes they underpin. Finally, parasites could support positive BD-EF relationships through
disease-dilution effects in diverse communities where disease transmission is strongly
increased by higher relative encounter rates between hosts. Hence, BD-EF assessments
should consider how parasites might modulate and modify diversity, and drive diversity effects
on functioning, and here we hope to stimulate researchers to investigate these scenarios.
Including parasites in BD-EF studies will require incorporation of the effect of parasitism on host
trait expression into current measures of intraspecific diversity, in conjunction with standard
diversity measures.

It is worth noting that parasites might represent 40% of all known metazoan species [82], and
helminth parasites are alone estimated to comprise 50% more species than there are verte-
brate hosts [83,84]. Parasite diversity becomes overwhelming if parasitic viruses, bacteria,
fungi, and protozoa are also considered. It is unlikely that ecological processes are not
[226_TD$DIFF]influenced by parasites in one way or another. Thus, there is no shortage of processes or
parasite species with which to study biodiversity functioning (see Outstanding Questions).
Considering the many effects parasites might have on community diversity will improve our
understanding of how and when biodiversity affects ecosystem functioning.
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