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Abstract
Now-outdated estimates proposed that climate change should have increased
the number of people at risk of malaria, yet malaria and several other infectious
diseases have declined. Although some diseases have increased as the
climate has warmed, evidence for widespread climate-driven disease
expansion has not materialized, despite increased research attention.
Biological responses to warming depend on the non-linear relationships
between physiological performance and temperature, called the thermal
response curve. This leads performance to rise and fall with temperature.
Under climate change, host species and their associated parasites face
extinction if they cannot either thermoregulate or adapt by shifting phenology or
geographic range. Climate change might also affect disease transmission
through increases or decreases in host susceptibility and infective stage (and
vector) production, longevity, and pathology. Many other factors drive disease
transmission, especially economics, and some change in time along with
temperature, making it hard to distinguish whether temperature drives disease
or just correlates with disease drivers. Although it is difficult to predict how
climate change will affect infectious disease, an ecological approach can help
meet the challenge.
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Box 1. Malaria and climate

The world’s most important parasitic disease is malaria13. 
Climate affects the malaria parasite and the mosquitoes that 
vector it. However, there is a distinction between climate 
suitability for transmission and realized transmission because 
even when climate is suitable for malaria transmission, many 
additional factors interrupt transmission14. In fact, economic 
development has trumped climate in determining the global 
malaria distribution, reducing malaria transmission in developed 
nations even as temperatures have become more permissive15. 
Meanwhile, malaria resurged in Greece after health services 
had been cut following the 2008 recession (though some have 
blamed a warming climate as well)16. In developing nations with 
limited vector control and healthcare infrastructure, climate can 
still hold sway. In particular, malaria has increased at high-altitudes in 
East Africa because of warming10. Across a broader temperature 
range, climate impacts on malaria transmission are more subtle 
and include expanding the transmission season17. At continental 
scales, some models project expansions in climate suitability 
for malaria18, whereas other models, based on different curves, 
predict poleward (and altitudinal) shifts14,19 or decreases20. These 
different predictions stem from different model assumptions. In 
particular, non-linearities in the performance curves for malaria 
and mosquitoes have suggested that optimal temperatures for 
transmission are much lower than previously thought21,22 and that 
in future warming scenarios much of Africa will be too warm for 
efficient transmission23.� 

Introduction
It is almost 2020, the year in which early efforts predicted that cli-
mate change would have increased the number of people at risk 
of malaria by 60%1. As with many parasitic diseases, the malaria 
parasite and its mosquito vectors are most prevalent in the trop-
ics and have annual peaks during or after warm seasons. Early cli-
mate models predicted that warming would expand parasite and  
mosquito vector ranges beyond the tropics. Furthermore, temper-
ature change can stress hosts, and stress might make them more  
susceptible to infection or death. Finally, some diseases have  
emerged or increased2 just as global greenhouse effects3, urban 
heat islands4, and devegetation5 have increased temperatures over 
the last century, suggesting that this warmer world will be a sicker 
world6. Concern for a sicker world led to increased research on cli-
mate change and infectious disease7, and public opinion and funders 
took notice8. As a result, we now better understand the complex  
linkages between climate and disease transmission.

Although the globe has warmed, many human infectious diseases 
(particularly those responsible for the most human suffering) have 
declined since 19999, with some notable exceptions (for example, 
West Nile, Ebola, dengue, chikungunya, and Zika). For example, 
although warming has expanded highland malaria transmission in 
some places, transmission did not increase into western Europe and 
the United States (Box 1)10. Instead, after rising with population 
growth, mortalities declined by 40% in Africa between 2000 and 
2015, and this was largely due to insecticide-treated bed nets and 
other interventions11. The decline in malaria in a warming world 
shows how economic growth and interventions can mask climate 
effects. By contrast, other pathogens have expanded in recent years, 
particularly arboviruses such as West Nile, dengue, chikungunya, 

and Zika, pandemic influenza viruses, Ebola virus, and coronavi-
ruses that cause severe acute respiratory syndrome (SARS) and 
Middle Eastern respiratory syndrome (MERS). The resurgence and 
spread of these diseases are thought to be linked to global change 
(for example, urbanization, land use change, climate change, and  
global travel), but direct links to climate change have not been 
established12. In sum, many diseases are changing—some decreas-
ing dramatically and others expanding and emerging—but the  
evidence linking these shifts to climate change is limited.

Rise and fall
Biological responses to warming, including infectious diseases, 
depend on the non-linear relationships between performance and 
temperature. Temperature increases enzyme function24, membrane 
permeability25, and respiration rate26 while decreasing molecular 
stability. These opposing temperature effects result in hump-shaped 
thermal reaction norms (or performance curves) that rise from a 
minimal temperature limit to a peak at the optimal temperature, 
followed by a sharp fall to a critical maximum temperature limit27 
(Figure 1). When gene flow and acclimation are limited28, labora-
tory organisms evolve to optimize performance by specializing 
on a fixed laboratory temperature29, resulting in high and narrow  
performance curves. However, because field temperatures vary 
(daily, seasonally, annually, and decadally), especially with  
latitude, species either evolve low and broad thermal perform-
ance curves30 or regulate toward an optimal temperature through  
endothermy, behavior, phenology, or migration31. Such adapta-
tions have established thermal niches that have bounded species  
distributions for millennia. But what happens if global temperatures 
increase faster than species’ thermal niches can adapt?

How any species, parasite or free-living, responds to increased  
global temperature depends on their current thermal response 
curve and their ability to thermoregulate, adapt (including shifts in  
phenology), and shift geographic ranges32. For instance, species 
from high latitudes can tolerate considerable warming because 

Figure 1. A thermal performance curve for a hypothetical 
ectotherm. All species, whether free-living or parasitic, rise and fall 
with temperature. Performance rises slowly from the critical thermal 
minimum (CTmin) to a thermal optimum (To), declining sharply to the 
critical thermal maximum (CTmax).
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they are adapted to variable temperatures33. In contrast, most 
tropical species have narrow thermal response curves and limited  
thermoregulation33. If such species are mobile, their geographic 
ranges should shift to higher latitudes and altitudes. In contrast, 
sedentary or island species might either adapt to warmer tempera-
tures or go extinct. As parasite and host ranges shift, generalist para-
sites with broad host ranges should persist. By contrast, specialist 
parasites should be more sensitive because climate change could 
disrupt parasite transmission and reduce parasite burdens while also 
disrupting host populations. Host pathology could increase if infec-
tious agents adapt faster to higher temperatures. This could be the 
case for long-lived, sedentary tropical hosts (like trees or corals) 
that have limited capacity to tolerate, adapt to, or move in response 
to temperature increases6. Depending on the system, parasite  
transmission, pathology, and geographic range could decline, 
increase, or stay the same, making general predictions  
challenging34.

Climate change might also affect disease transmission through host 
susceptibility, which depends, in part, on investment in defense. It 
is common to assume that warming will decrease immune func-
tion because cellular and humoral immune defenses are expensive 
to maintain35 and can collapse under thermal stress. For instance, 
black abalone become more susceptible to rickettsia infection  
under variable temperatures and infected individuals die faster 
as mean temperature rises36. On the other hand, warmer tempera-
tures can increase immune response in fishes and amphibians37, 
oak resistance to sudden oak death38, and the immune response to 
cold virus in humans39. Given these diverse responses, the immune 
response, like other performance measures, should follow a hump-
shaped temperature response curve with decreased function at lower 
or higher than optimal temperatures, though too few data exist to  
generalize37. Another way susceptibility can respond to climate 
change is if shifts in pathogen distributions expose naïve host 
populations to new diseases40; a key example is occurring in 
the Ethiopian highlands, where recent malaria expansions have 
caused increased disease in previously unexposed populations41,42.  
Overall, climate change could affect host susceptibility, but the 
effect probably varies with temperature and other factors.

Temperature also affects parasite transmission through infec-
tive stage (and vector) production and longevity. For example, an 
influenza virion’s viability decreases with temperature so that flu 
transmission is lower during mild El Niño winters than in normal 
cold winters in California43. In contrast, transmission stage produc-
tion in ectothermic hosts should increase with temperature up to a 
thermal optimum; for example, nematode parasites have increased 
in warming Arctic areas where larval development rates have 
increased44,45. Increases in parasite and host death rates can coun-
teract this temperature effect on parasite production. For instance, 
snails shed more amphibian-seeking trematode larvae under warmer  
temperatures46, and one might expect that parasite intensity would 
increase. However, trematode intensity is halved in a 3°C warming  
experiment because of an increase in parasite and host death rate47. 
This dual effect of production and death on transmission helps 
explain why some trematode infections increase with warmer 
water48, whereas other species do better at cold temperatures49.  
Likewise, although field observations initially suggested that  

swallow parasites would increase with global warming, experi-
mentally heating nests above ambient temperature killed parasites, 
leading to a sharp decline in parasitism50. Similarly, increasing  
temperature hastens Plasmodium development but, above a certain 
temperature, transmission declines because of increased mosquito 
death, leading to hump-shaped temperature-transmission curves51.

The shape and range of a thermal response curve (Figure 1) deter-
mine where temperature suitability for an infectious disease will 
increase or decrease with climate change, with differences in model 
curves altering model predictions (Box 1). Potential poleward shifts 
in suitability for tropical diseases predicted from the thermal per-
formance curve can cause alarm in countries at high latitudes52. 
Fortunately, many high-latitude countries are able to mitigate such 
risks because of higher economic development and healthcare 
infrastructure53.

Host pathology should often follow the parasite thermal perform-
ance curve54. For instance, the fungal pathogens responsible for 
amphibian declines have a cool optimal temperature55 and are 
expected to cause fewer problems as climate warms56. However, 
host death rates tend to increase with temperature, as seen for 
infected corals57,58, sea stars59,60, and abalone61,62 that have suffered 
catastrophic mass mortalities. Because temperature-induced host 
death kills parasites, it can, in the long term, drive a host-specialist  
parasite to extinction36,63. For this reason, the most pathogenic  
parasites have a hard time persisting without a tolerant reservoir 
host.

Other drivers
Many factors drive disease transmission, including some that have 
changed in time along with climate. A key factor is host density 
(including vectors and reservoir hosts), which should increase the 
force of infection64. For instance, although marine disease reports 
have increased over time65, and some, like coral diseases, might be 
due to increased temperature, most disease reports parallel changes 
in host abundance (due to either increased disease transmission or 
increased detection). In particular, the one group for which dis-
ease reports declined over time was commercially valuable fishes, 
which have suffered global stock collapses66. For human, crop, and  
livestock diseases, economic development is another key  
driver67,68. Most notably, it is clear from historical data that 
malaria does not occupy its full ecological niche, due to its 
elimination from wealthier nations69, leading to a decline in  
malaria’s distribution as the earth has warmed15,34. Economic 
growth drives health interventions such as vector control, increased 
sanitation, deforestation, and shifts to urban living with limited 
wildlife contact, all of which can reduce disease emergence and 
spread70. However, economic growth also drives global travel 
and trade, which can unintentionally spread pathogens. Contact  
networks for directly transmitted diseases are now global due to 
air travel and trade routes that continue to introduce invasive spe-
cies, which, on average, bring with them two parasitic species per 
host species42. These novel parasites meet naïve hosts with unpre-
dictable outcomes. Because host density and economics change 
over time, it can be hard to separate climate change effects from 
other changes. Current examples are emerging and resurging  
dengue, chikungunya, and Zika viruses. These viruses benefitted 
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from vector expansion and invasion, lapsed vector control, global 
tire trade, global human movement, urbanization and unplanned  
development, deforestation, high human densities, and poverty71. 
Despite these drivers, climate change captures the headlines, such 
as “In Zika Epidemic, a Warning on Climate Change”72.

Many emerging and resurging diseases in wildlife (for example, 
chytridiomycosis, and white nose syndrome) and in humans (for 
example, dengue, Zika, chikungunya, and diarrheal diseases) are 
increasing in prevalence and geographic range over time as climate 
changes, constituting the main evidence to link a warmer world 
with a sicker world7,73. However, other drivers can correlate with 
temperature changes, making it difficult to separate a temperature 
effect from a spurious correlation. In particular, disease events  
during warm years are not sufficient evidence for a climate change 
effect because diseases emerge each year for various reasons. 
For instance, seven out of nine historical yellow fever epidem-
ics occurred in different cities during the 1878–79 El Niño74, but 
this strong El Niño effect disappears after considering longer time 
series34. Because the recent Brazilian Zika epidemic occurred  
during an El Niño, similar claims have been made for Zika virus75 
even though Zika had previously spread throughout the South 
Pacific without fanfare76. Although increases in new human dis-
eases and new locations for old diseases are alarming, some may be 
due to species introductions or increased surveillance and reporting 
but have no clear link to climate2. Sometimes a causal link between 
temperature and disease is not due to thermal physiology or climate 
change. In addition to direct physiological effects, temperature 
can indirectly affect disease dynamics. A temperature association 
can occur if warming drives changes in abundance or movement 
that affect transmission. For example, warming increases disease 
in monarch butterflies because a milder climate removes the need 
to migrate, which benefits protozoan parasites otherwise lost when 
infected hosts die during migration77. In other cases, a temperature 
effect is not a climate change effect. For example, deforestation 
creates warmer microclimates, which, in turn, can increase local 
malaria transmission78. Regardless, the difficulty in establishing a 
link between climate change and disease does not mean no link 
exists, just that observed links have alternative explanations that 
might be more or less likely. For these reasons, temperature-disease 
correlations best indicate a climate change effect if they persist after 
removing the temporal trend and have experimental support.

When climate does associate with an increase in a disease 
in a particular location, it is important not to overgeneralize.  
Sometimes effects vary among hosts, such as the observation that 
parasites increased in some but not all European bird species over 
5- to 15-year time intervals, with a positive association between 
changes in temperature and changes in parasitism79. Results can 
also be inconsistent among similar parasite species. For instance, a  
30-year study found that one rabbit nematode species increased  
along with increases in temperatures but that a second did not  

change80. Similarly, while temperature increased at Finnish fish 
farms, two pathogens increased and two declined81. Finally, an 
increase in one location might be paired with a decrease at another 
location23. Although general explanations are attractive, we should 
expect winners and losers as climate changes.

Conclusion
Although it is difficult to test how climate affects infectious  
disease burdens in humans, livestock, and wildlife, the implications 
for human wellbeing make it imperative that we meet the challenge. 
Fortunately, climatologists are making headway defining climate 
change, and their efforts could lead to new insights into poten-
tial disease drivers like disproportionate increases in nighttime or  
winter temperatures, reduced temperature variation, increased 
extreme event intensity and frequency, and changes to precipitation. 
Armed with better climate information, ecologists can use experi-
ments, mathematical and statistical modeling, and observational 
work to understand and predict how infectious disease responds 
to climate change82. Basic information on thermal physiology is 
lacking, but various efforts are underway to better describe infec-
tious agent and vector thermal niches by describing their thermal 
performance curves, testing for local adaptation, and measur-
ing thermoregulation. Once we understand thermal physiology  
better, a greater appreciation for the economic and environmental 
factors driving infectious diseases will make it easier to evaluate 
climate change effects in relation to parallel changes such as land 
conversion, urbanization, species assemblages, host movement, 
and demography83. At that point, we can predict which diseases 
are most likely to emerge where, so that public health agencies  
can best direct limited disease control resources84, rather than  
wondering whether a warmer world will be a sicker world.
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