
 on April 24, 2017http://rstb.royalsocietypublishing.org/Downloaded from 
rstb.royalsocietypublishing.org
Research
Cite this article: Wood CL, McInturff A,

Young HS, Kim DH, Lafferty KD. 2017 Human

infectious disease burdens decrease with

urbanization but not with biodiversity.

Phil. Trans. R. Soc. B 372: 20160122.

http://dx.doi.org/10.1098/rstb.2016.0122

Accepted: 28 January 2017

One contribution of 13 to a theme issue

‘Conservation, biodiversity and infectious

disease: scientific evidence and policy

implications’.

Subject Areas:
health and disease and epidemiology

Keywords:
Infectious disease, disability-adjusted life year,

dilution effect, global change

Author for correspondence:
Chelsea L. Wood

e-mail: chelwood@uw.edu
& 2017 The Author(s) Published by the Royal Society. All rights reserved.
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.fig-

share.c.3717517.
Human infectious disease burdens
decrease with urbanization but not with
biodiversity

Chelsea L. Wood1,2, Alex McInturff3, Hillary S. Young4, DoHyung Kim5

and Kevin D. Lafferty6

1Department of Ecology and Evolutionary Biology and Michigan Society of Fellows, University of Michigan,
Ann Arbor, MI 48104, USA
2School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
3Department of Environmental Science, Policy, and Management, University of California, Berkeley,
CA 94720, USA
4Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
5Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
6US Geological Survey, Western Ecological Research Center, c/o Marine Science Institute, University of California,
Santa Barbara, CA 93106, USA

CLW, 0000-0003-2738-3139; HSY, 0000-0003-0449-8582; KDL, 0000-0001-7583-4593

Infectious disease burdens vary from country to country and year to year

due to ecological and economic drivers. Recently, Murray et al. (Murray CJ

et al. 2012 Lancet 380, 2197–2223. (doi:10.1016/S0140-6736(12)61689-4))

estimated country-level morbidity and mortality associated with a variety

of factors, including infectious diseases, for the years 1990 and 2010. Unlike

other databases that report disease prevalence or count outbreaks per country,

Murray et al. report health impacts in per-person disability-adjusted life years

(DALYs), allowing comparison across diseases with lethal and sublethal

health effects. We investigated the spatial and temporal relationships between

DALYs lost to infectious disease and potential demographic, economic,

environmental and biotic drivers, for the 60 intermediate-sized countries

where data were available and comparable. Most drivers had unique associ-

ations with each disease. For example, temperature was positively associated

with some diseases and negatively associated with others, perhaps due to

differences in disease agent thermal optima, transmission modes and host

species identities. Biodiverse countries tended to have high disease burdens,

consistent with the expectation that high diversity of potential hosts should

support high disease transmission. Contrary to the dilution effect hypothesis,

increases in biodiversity over time were not correlated with improvements in

human health, and increases in forestation over time were actually associated

with increased disease burden. Urbanization and wealth were associated with

lower burdens for many diseases, a pattern that could arise from increased

access to sanitation and healthcare in cities and increased investment in

healthcare. The importance of urbanization and wealth helps to explain

why most infectious diseases have become less burdensome over the past

three decades, and points to possible levers for further progress in improving

global public health.

This article is part of the themed issue ‘Conservation, biodiversity and

infectious disease: scientific evidence and policy implications’.
1. Introduction
A person born today in Japan can expect to live 84 years, whereas an average

Sierra Leonean will live to 50 [1]. These country-to-country differences stem

from many factors, but infectious diseases are among the most important,

accounting for 16% of global deaths and causing tens of millions of years of

healthy life to be lost annually, primarily in low-income countries [2]. These
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spatial patterns in disease can also shift over time, with some

diseases declining (e.g. smallpox eradication), and others

increasing in prevalence (e.g. HIV/AIDS) or expanding in

geographic range (e.g. dengue). The Sustainable Develop-

ment Goal agenda focuses on improving global health and

reducing health disparities [1]. Understanding the factors

that drive disease patterns in space and time is a crucial

first step in these efforts, as this approach may identify

effective levers for improving human health.

There are some clear geographic patterns in the distri-

bution of infectious disease burden. For instance, wealthy,

temperate countries have fewer kinds of infectious disease

(lower pathogen richness) than do poor, tropical countries

[3,4], explaining disease hotspots in sub-Saharan Africa,

South America and Southeast Asia [5]. But which of the mul-

tiple, often correlated, potential drivers actually create these

patterns? Past studies on global-scale patterns of disease

have explored a wide range of potential drivers. Four hypoth-

esized (and interconnected) drivers recur in these studies:

human demography (e.g. population density or size), poverty

(e.g. per capita wealth), environment (e.g. climate, often prox-

ied by latitude) and biotic factors (i.e. biodiversity, reservoir

host or vector biodiversity, or proxies thereof). For instance,

previous work shows that population size [6,7] and species

richness [3,6–10] are positively associated with overall

human pathogen richness or number of outbreaks in a country.

But the number of disease agents or disease outbreaks does not

necessarily reflect disease burden; for instance, while the

relationship between biodiversity and pathogen richness is

hypothesized to be positive (e.g. [6]), the link between

biodiversity and disease burden is often hypothesized to be

negative (e.g. [4]). Focusing specifically on disease burden,

climate (i.e. temperature) has been positively linked to

pathogen prevalence, while per capita healthcare spending,

per capita wealth, and human population size have been nega-

tively linked to prevalence [4,6]. Our study builds on these

results with new data and new approaches. By also accounting

for change over time in these putative drivers and in disease

burden, our analysis avoids a serious pitfall of previous ana-

lyses: it is easier to observe spurious relationships among

variables measured at a single time point than among those

measured at multiple time points. For example, wealth might

have strong negative associations with disease in 2010, but if

increasing wealth does not produce a decrease in disease

between 1990 and 2010, we would have reason to question

whether the two variables are causally associated.
(a) Disease drivers
In this analysis, we investigate associations between disease

burden and demography, economics, environment and

biotic factors. All four associations have complex underlying

predictions. Wealth is frequently considered to be the most

important disease driver (e.g. [4,11]). Specifically, most dis-

eases are more common among the poor within a given

country and more common in poor countries than in wealthy

countries [12]. Wealth has many health benefits, including

clean water and sanitation, education and reduced contact

with the environment (i.e. reduced exposure to disease vec-

tors or reservoir hosts; [13–15]). By contrast, poverty and

disease can reinforce one another other, with poor health

eroding the human capital that otherwise might be used to

generate wealth and escape disease, leading to a ‘poverty
trap’ [11,16]. The mutually reinforcing nature of poverty

and disease makes it difficult to assess the direction of caus-

ality between these factors, and the importance of each in

reinforcing the other [4,11,12,16]. Wealth also correlates

with enhanced investment in and access to healthcare.

Consistent with this, previous global analyses have found

that human disease prevalence is lowest where per capita
healthcare spending is highest [6]. However, elevated

per capita healthcare spending could also reflect a high-

priority disease burden or be allocated in response to a

recent uptick in disease. To a certain extent, both could be

true, and the net effect might therefore be difficult to detect.

Human population density should also be linked to disease

prevalence. Basic epidemiological models suggest that increas-

ing host density (here, humans) increases disease transmission

[17]. However, a previous global analysis found no relationship

between human density and disease prevalence at the global

scale [6]. There are a few reasons why disease might not

increase with population density. In particular, transmission

rates, which should increase with density, are not the same

as host infection risk, which might increase or decrease in

response to host density. This is the case for encounter-dilution

effects, such as might occur for vector-transmitted diseases

or for diseases that spill over from wildlife [18,19]. Alterna-

tively, contact rates (and therefore transmission) might

saturate with increasing host density [20], or disturbance

caused by increased human density might degrade the ecologi-

cal systems upon which infectious diseases depend for

transmission (e.g. [21]; reviewed in [22]). Pathogenic diseases

could reduce human density by increasing mortality rates,

reversing the expected positive relationship between density

and disease (e.g. [23,24]). Finally, human migration patterns

might modify or even supersede any density effects. Density

is highest in cities, but urbanization might reduce exposure

to non-human hosts (e.g. by reducing human contact with bio-

diverse forest habitat), while also placing people in locales

where healthcare and sanitation infrastructure are close at

hand [25,26]. For example, immigrants to the city of Naples,

Italy, bring intestinal parasites from their countries of origin,

but lose those infections during the years that they spend

living in sanitary conditions with access to medical treatment;

they fail to pass their infections even to other members of their

own households [27]. Urbanization and population density

effects could cancel each other out or have variable effects

across diseases. Analyses that partition urbanization from

population density, wealth and biodiversity might help

reveal these effects.

Climate is another potential driver of disease burden.

As for free-living (i.e. non-parasitic) species, infectious agents

have ecological niches constrained by temperature and precipi-

tation. Although many infectious diseases are more prevalent

in tropical climates, for each disease there are hypothetical con-

ditions that are too hot or too cold, too wet or too dry [28].

Cumulatively, this suggests that relationships between climate

and disease (and between climate change and disease) could be

complex. Because climate change might affect hosts, vectors

and parasites in different ways, climate effects on disease are

likely to be idiosyncratic and difficult to predict [29].

The ‘diversity dilution effect’ is the most controversial

hypothesis about potential infectious disease drivers (e.g.

[22,30–40]). According to the dilution effect hypothesis, bio-

diverse communities (often indicated by intact forest habitat)

tend to contain non-competent hosts that interfere with

http://rstb.royalsocietypublishing.org/
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pathogen transmission or regulate reservoir host density;

declines in biodiversity should reduce these ‘diluting’ species,

leading to increased disease burden in low-diversity habitats

[41]. Although dilution effects are commonly reported in the

conservation biology literature [36], diversity’s direct relevance

for public health has rarely been tested in real-world contexts

[42]. Among the few studies that correlate diversity and

human disease risk, results are mixed [43]: some find negative

associations between biodiversity measures and disease

measures (e.g. [44]), some show increasing biodiversity

increasing disease risk (e.g. [21]), and others indicate that

whether biodiversity increases or decreases disease risk can

depend on other factors, such as human behaviour (e.g. [45–

47]). The evidence suggests that both positive and negative

associations between biodiversity and disease burden are poss-

ible, depending on the disease agent, the biodiversity measure

and the spatial scale [22,32,38], but the question remains: which

of these outcomes predominates [48]?

In addition to the complexity within each putative driver of

infectious disease burden, a further complication is that inde-

pendent variables can interact with each other or be driven by

a common factor. For instance, wealth, biodiversity, tempera-

ture and disease are all associated with latitude [4]; forests

depend on precipitation and biodiversity can be associated

with forest; health spending depends on wealth, while wealth

and human density could reduce forestation; and so on.
(b) New approaches
Previous studies examining human pathogen geography

have used indirect data on human disease burden [5], such

as outbreak frequency (e.g. [8,49]), pathogen richness (e.g.

[6,50]) or aggregated prevalence (e.g. bins of endemic,

sporadic or not endemic summed across pathogens with

different health impacts and ecologies [6]). However,

human disease burden is best measured as disability-

adjusted life-years (DALYs), or the sum of years of life lost

and years lived with disability [13,14,51]. This summary

measure permits an ‘apples-to-apples’ comparison of disease

burden across disease types, allowing deadly diseases to be

compared in a coherent way to diseases that are disabling

but rarely fatal. Since their introduction in the mid-1990s

[52], DALYs have become a standard way to measure

health [2]. In the past few years, the release of new

country-level data spanning two decades [51] has made it

possible to investigate broad-scale spatial and temporal pat-

terns in disease burden. Here, we use the most recent data

to explore predictions about how human density, poverty,

climate, and biodiversity drive temporal and spatial variation

in infectious disease burden in humans.

Countries are not ideal units of replication. First, they vary

in area and population, which means that statistics and indices

that vary with sample size (e.g. number of outbreaks, species

richness, gross national income (GNI)) are invalid for compari-

son. For this reason, we used only per capita measures or

densities. A subtler limitation is the ‘ecological fallacy’, which

occurs when patterns at one scale of organization (e.g. the

country level) are presumed to reflect patterns at another

scale of organization (e.g. the individual [53,54]). Ecological fal-

lacies can also occur when patterns at one spatial scale (e.g.

China at 9 400 000 km2) are presumed to be comparable to pat-

terns at another spatial scale (e.g. El Salvador at 21 000 km2

[53,54]). Taking China and El Salvador as examples of large
and small countries, respectively, processes that occur at the

local scale for China could be the processes that occur at

the country scale for El Salvador, and processes occurring

at the country scale for China might have no analogue in

El Salvador [55,56]. Furthermore, it is more likely that people

living in El Salvador will experience its average climate,

wealth and biodiversity, whereas the average conditions in

China combine regions that vary greatly from one another in

climate, wealth, biodiversity and other factors. We therefore

chose to exclude large countries from our analysis, to increase

the probability of detecting trends at the country level, and

reduce the probability that those trends would be swamped

by the interference of different processes in larger countries.

Another problem with comparing countries is that accuracy

in health statistics and reporting varies from country to

country. Although Murray et al. [51] do their best to account

for accuracy, residual differences might add error to DALY

estimates, reducing statistical power. Furthermore, because

countries can occur near other countries, they are not always

independent replicates. To address the potential for such

spatial autocorrelation, we assessed independence among

countries using Moran’s I. A final problem with using

countries as replicates concerns the unknown, country-specific

factors that could affect infectious diseases, including histor-

ical, political, or cultural effects. One way to account for this

is to use many descriptive variables, but using too many vari-

ables leads to overly complicated statistical models. Unlike any

other study that has used countries as replicates in spatial

associations between human disease burden and potential

drivers, we were also able to use countries as replicates in

temporal comparisons. Temporal comparisons help control

for most geographical, historical, political or cultural effects

by comparing countries (i.e. in 1990) against themselves

(i.e. in 2010). On the other hand, our two time-point compari-

son (1990 and 2010) does not possess the resolution needed to

investigate dynamics and is subject to spurious correlations

driven by unmeasured temporal trends. Because temporal

and spatial comparisons each have their limitations, we give

more weight to drivers associated with similar spatial and

temporal variation in disease.
2. Material and methods
To examine hypotheses about what drives global infectious dis-

ease burdens, we used correlations between putative drivers and

DALYs. We took two approaches: the first, a spatial analysis,

used country-level estimates from 2010 as the unit of replication,

and the second, a temporal analysis, used change in country-

level estimates between 1990 and 2010. Because we sought to

find associations between putative drivers and disease, we

chose diseases and countries to maximize sample size while

minimizing confounds and over-fitting. In this section, we dis-

cuss how we selected and defined the variables and calculated

associations among them. The full dataset is available as the elec-

tronic supplementary material, S1.

(a) Diseases
We started with the infectious diseases tracked by the World

Health Organization’s Global Burden of Disease (WHO GBD)

database (electronic supplementary material, S2). We excluded

the WHO GBD disease classes that encompass multiple pathogens,

and those that can be caused by either infectious or non-infectious

processes (e.g. diarrheal diseases, respiratory infections, ‘other

http://rstb.royalsocietypublishing.org/
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infectious diseases’, ‘other neglected tropical diseases’). We also

excluded those diseases that were reported from fewer than 10

countries (African trypanosomiasis, onchocerciasis, trachoma)

and one disease (yellow fever) that caused , 100 global DALYs

in the included countries (see §3) in 2010 (electronic supplemen-

tary material, S2). After these exclusions, 24 diseases remained

for analysis. For the spatial analysis, our response variable was

DALYs per 100 000 people in 2010 for each of the included infec-

tious diseases. For the temporal analysis, change in disease

burden between 1990 and 2010 was calculated at the country

level for each disease. Countries with zero values in both 1990

and 2010 were excluded from the temporal analysis (but not

from the spatial analysis), because change in the burden of a dis-

ease is not possible in countries where the disease does not exist;

that is, in a country with a 1990 burden of zero and a 2010

burden of zero, change over time (0) is unrelated to the putative

drivers included in the statistical model, and reduces statistical

power for detecting relationships between putative drivers and

change in burden of other diseases where burden is more than

zero. The temporal analysis controls for parallel global trends in

putative drivers and disease that could lead to spurious disease–

driver correlations in traditional time-series analyses. In other

words, a global increase in wealth that parallels a global decline

in disease would not register as a negative wealth–disease corre-

lation in our analysis. To establish such a wealth–disease

correlation in our analysis requires that countries with the greatest

growth in wealth experience the greatest decline in disease.

(b) Potential drivers
For each country, we derived or found published data on the fol-

lowing putative disease drivers: per capita wealth, human

population density, per cent of people living in urban environ-

ments, temperature, precipitation per unit area, forest cover per

unit area and bird þmammal species richness per unit area

(data sources listed in the electronic supplementary material, S2).

To match disease data, driver data were from 1990 and 2010 or

the closest years possible (see the electronic supplementary

material, S2). We started with the 192 sovereign nations tracked

by the World Bank. From these, we imposed an upper country-

area cut-off (greater than 1.5 million km2) to limit the potential

for ecological fallacy and a lower country-area cut-off (less than

625 km2) to prevent tiny nations from having a disproportionate

effect on results. We imposed an area-forested cut-off because

change in forestation over time has little meaning in nations that

begin with little or no forest cover, and a 10% cut-off (according

to satellite-derived forest cover metrics, see below) represented a

natural breakpoint in the data. We also excluded countries without

available population, GNI or climate data (see the electronic sup-

plementary material, S2 for how the 192 countries were treated

and electronic supplementary material, S3 for world map indicat-

ing the included countries). After these exclusions, 60 countries

(more than 30% of all 192 countries) remained (electronic sup-

plementary material, S2 and S3). For the temporal analysis, we

calculated change in drivers between 1990 and 2010 as log ratios

(log10[driver in 2010/driver in 1990]).

Biodiversity change was the most difficult driver to measure.

We wanted to avoid country-level richness estimates because

these increase with country area, so we created a novel integrated

species richness estimate for birds and mammals by averaging

bird and mammal species richness across all 10 � 10 km pixels

within each country’s terrestrial grid [57]. We found no well-

resolved global biodiversity estimates across multiple time points,

nor did we expect that reported range changes or extinctions

between 1990 and 2010 would have been a meaningful way to

measure biodiversity change. Therefore, to estimate biodiversity

change, we first found the most recent and most highly resolved bio-

diversity dataset available ([57]; electronic supplementary material,
S2) and averaged bird and mammal species richness across all 10�
10 km pixels within each country’s terrestrial grid. This yielded

country-level biodiversity estimates for 2012. To generate country-

level biodiversity estimates for 1990, we used a least-squares

regression to predict the slope and intercept that best fit the relation-

ship between country-level biodiversity in 2012 and satellite-

derived forest cover in 2012. We then used the coefficients from

this regression model to predict the biodiversity in each country

in 1990 and 2012, given each country’s satellite-derived forest

cover estimate for 1990 and 2012. We divided each country’s 1990

biodiversity prediction by its 2012 biodiversity prediction to

obtain an estimated inverse change in biodiversity for each country.

We then multiplied this predicted inverse change by the observed

2012 biodiversity to hindcast biodiversity in 1990 for each

country. This was done for mammals and birds separately.

We acknowledge that our approach only measures biodiversity

change indirectly, that some biodiversity loss might be associated

with change in forest attributes other than cover [58], and that

our forest-based metric will fail to capture change in non-forest

terrestrial biodiversity, freshwater biodiversity, marine biodiversity

and diversity of organisms other than birds and mammals. How-

ever, within this limited scope (i.e. forest mammals and birds),

there is evidence for a strong positive link between forestation and

biodiversity (e.g. [59–61]). Our approach also represents a signifi-

cant improvement over previous efforts, all of which have used

biodiversity estimates at only one point in time (e.g. [3,6,8]).

Data on forest cover in 1990 and 2012 were derived from pub-

lished Landsat-based estimates for forested cells at 30-m resolution

[62,63]. This fine resolution was inconsistent with our biodiversity

data, so forest cover data were aggregated to 5 km grid cells. In each

cell, we denoted per cent forest cover while accounting for cloud

and snow cover. These larger cells were used to estimate the

forest cover for each country. Forest cover data at this spatial reso-

lution were not available for 2010 (the year in which we have data

for human disease burden), but were available for 2012 [62]. Satel-

lite-derived forest cover estimates for 1990 [63] and 2012 [62] were

not produced with consistent methods: the 1990 estimates define as

‘forested’ any 30-m pixel with greater than or equal to 30% canopy

cover, whereas the 2012 estimates use a 25% cut-off. However,

because both methods were used to derive estimates for the year

2000 [62,63], we were able to reconcile the 1990 and 2012 values

by regressing estimates for 2000 produced with the 30% cut-off

against estimates for 2000 produced with the 25% cut-off (F1,58 ¼

1823, p , 2 � 10216, R2 ¼ 0.9692) and applying this correction

factor (y ¼ 1.04x 2 0.32) to the 2012 estimates. Although satellite-

derived data can produce forest cover estimates at unprecedented

spatial and temporal resolutions, this method also has an important

constraint: satellite data might incorrectly classify tree plantations

(e.g. oil palm plantations) as forest [64]. While these plantations

can have a high canopy cover, the biodiversity they contain is prob-

ably less than that in natural forest [65–68]. At the present moment,

there are no global-scale forest cover data that parse forest from tree

plantations (only regional datasets, e.g. [65]). To test whether our

results were robust to this constraint on the forest cover data, we

also considered a second, independent measure for forest: natural

forest cover (i.e. excluding plantation) reported by governments

to the UN Food and Agriculture Organization (FAO). These data

are, in some ways, inferior to satellite-derived forest cover data,

because estimates are self-reported and therefore might be inaccur-

ate and because ‘forest’ definitions differ among countries.

However, FAO data do parse plantation forest area from natural

forest area in country-level forest cover estimates. Although we

suspected that FAO forest estimates would be inferior, our use

of structural equation modelling (SEM, see §2c) allowed us to use

both FAO and satellite-derived forestation to inform a latent

variable for ‘forestation’.

Finally, we sought to control for geographic patterns set by

human evolution and distribution limits for disease vectors

http://rstb.royalsocietypublishing.org/
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and reservoir hosts. Many human infectious diseases originated

in Africa, and some, like Chagas disease, occur only in the

Americas [69]. For this reason, we included a binary variable

(Western versus Eastern Hemisphere) to assess the extent to

which diseases were distributed in the New World (the Americas)

versus the Old World. This variable was included in the spatial

analysis only, because the temporal analysis controls for such

country-level factors by comparing each country to itself.

(c) Analyses
Many of the putative drivers of disease burden correlated with one

another. To address this non-independence, we used SEM (a form

of path analysis) to consider relationships among drivers and

between drivers and disease burden, using the software package

SMARTPLS (v. 3.2.4). Partial least-squares SEM (PLS-SEM) is most

suitable when data do not meet normality assumptions, when

there are many potential factors and when sample size is small

[70]. In contrast to most statistical approaches, which assume

that drivers are independent from each other, SEM allows users

to designate potential relationships among drivers and to construct

latent variables that result from several measures. For instance, we

assumed that rain could affect forests, which could affect biodiver-

sity, which could affect disease, and we also expected that forests

and rain could each affect disease directly. We used species rich-

ness information on birds and mammals to form a composite

latent variable to represent biodiversity. As described in §2b, we

used two independent forest estimates (expressed as forest area

divided by country area) to inform a composite latent variable

called forestation. Finally, we used information on per capita GNI

to represent wealth. (Because per capita spending on healthcare

was nearly perfectly correlated with GNI, and so did not add

extra explanatory power, we did not include it.) A spatial and tem-

poral PLS-SEM model was constructed for each disease. Standard

errors were calculated with bootstrapping. The bootstrapped sub-

sample was used to estimate the parameters of each PLS path

model 5000 times; standard errors, t-statistics, and p-values were

then calculated from the 5000 estimates for each parameter [70].

This re-sampling strategy makes PLS-SEM robust to violations of

normality. We then used standardized regression coefficients

from the PLS-SEM output as inputs to a meta-analysis (described

below), which summarized patterns across all the included dis-

eases. We recognize that PLS-SEM is a new technique; although

we believe it to be the superior choice for the reasons stated

above (especially because it can explicitly account for relationships

among independent variables), we also ran a more traditional

panel analysis. This analysis produced qualitatively similar results

and is presented in the electronic supplementary material, S4.

For each disease, we built an interaction network among

the putative drivers. One network was developed for spatial

correlations and a similar network was developed for temporal cor-

relations. To reduce over-fitting and increase power, we simplified

networks in two steps. First, if there was no logical reason to

expect that a factor could drive a particular disease, we eliminated

it a priori. For instance, we assumed that temperature, precipitation,

forest cover and biodiversity did not affect HIV transmission (see

table 1 for the a priori path exclusions). Second, we further pruned

each model by removing the least significant paths in sequence

until only marginally significant paths ( p , 0.10) remained. After

running the pruned model, we checked the adjusted R2 to assess

whether the remaining factors explained significant variation in

disease burden. We used Ward’s method for hierarchical cluster

analysis to produce trees that indicate similarity among disease

agent interaction networks. These trees were intended to summar-

ize and illustrate the results of the PLS-SEM by indicating

diseases with similar responses to putative drivers.

We then used meta-analysis on the standardized regression

coefficients from PLS-SEM models to detect general patterns

among diseases. To avoid biasing general patterns by excluding
those coefficients that were non-significant and therefore had

little influence on disease, we used coefficients from the a priori
simplified models from which illogical paths had been excluded,

but not the pruned models from which non-significant paths

were excluded. We derived standard errors for each standardized

regression coefficient using the standard deviation associated

with the SEM model divided by the square root of the number

of countries for which that model was run (table 1). We calcu-

lated a cumulative effect size for each driver across all diseases,

using a random-effects model weighted by the inverse of the

variance for each effect size. All meta-analyses were performed

in the metafor package in R.

To compare the spatial and temporal results and, in particular,

to assess their consistency, we plotted the mean spatial coefficient

and mean temporal coefficient for each driver. Consistency in

spatial and temporal results suggests robust findings. Specifically,

we had more confidence in results for putative drivers for which

the spatial and temporal coefficients were similar. However, we

were also interested in factors for which the temporal and spatial

patterns differed, because this could indicate areas where results

of previous analyses—all of which have used spatial comparisons

exclusively—are misleading. For example, using spatial analysis

alone, we might observe that warm countries have more disease

than cold countries and conclude that increasing temperature

could increase disease. Observing change over time allows us to

test whether that spatial pattern accurately reflects underlying

processes, and could easily reveal the opposite—that increasing

temperature decreases disease.
3. Results
In the spatial PLS-SEMs, there were several interactions

among the putative drivers (figure 1a, top panels). Consistent

with well-recognized patterns, high-latitude countries tended

to have greater wealth, lower temperature and lower biodiver-

sity than low-latitude countries. Wealthier countries tended

to be more urbanized than poorer countries. Biodiversity was

higher in forested countries and forest cover was positively

associated with precipitation and negatively associated with

human population density.

In the spatial PLS-SEMs, all diseases had at least one signifi-

cant association in the pruned model, and more than 60% of

diseases had three or four significant associations (figure 1a,

lower right panel). Hemisphere (Western), wealth, per cent

urbanization and density were significantly (and generally

negatively) associated with 7–15 diseases, temperature was

positively associated with seven diseases, and biodiversity was

positively associated with four diseases. By contrast, associ-

ations between disease burden and precipitation or forestation

were mixed, including some strongly negative and some

strongly positive outcomes. Three infectious diseases (rabies,

hepatitis A and varicella) showed significant spatial autocorrela-

tion, suggesting that we over-estimated degrees of freedom

when assessing p-values for these diseases (electronic sup-

plementary material, S5). Furthermore, as indicated by the

adjusted R2, models failed to explain significant variation in dis-

ease burden for four diseases: hepatitis C, diphtheria, dengue

and food-borne trematodiases. We note that although this

approach is not well suited for assessing statistical significance

for these particular infectious diseases, it does reliably reveal

patterns across diseases.

Most diseases had unique path models in the spatial

analysis (figure 1a), but there was some clustering among

disease models (figure 2a). Malaria, schistosomiasis and
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Table 1. Diseases selected for analysis from the WHO GBD database. Excluded from consideration due to low country frequency were onchocerciasis, African
trypansomiasis and trachoma. Excluded from consideration due to low DALYs was yellow fever. Also indicated are the number of countries reporting each
disease, transmission mode and category of each disease, any factors that were eliminated from the model based on first principles, and the sum of global
DALYs in 2010. Diseases are grouped by transmission category and then placed in order of descending global DALYs in the included countries in 2010. See the
electronic supplementary material, table S1 for additional details.

disease no. countries transmission mode
transmission
category

a priori model
simplification DALYs 2010

malaria 60 mosquito vector/zoonotic 8 448 885

schistosomiasis 14 snail vector/zoonotic 524 883

lymphatic filariasis 22 mosquito vector/zoonotic 373 381

dengue 60 mosquito vector/zoonotic 312 308

rabies 60 animal bite vector/zoonotic 217 773

leishmaniasis 34 sand fly vector/zoonotic 216 541

food-borne

trematodiases

24 food vector/zoonotic 169 017

Chagas disease 20 bug vector/zoonotic 119 545

cysticercosis 44 ingestion, autoinfection vector/zoonotic 95 188

echinococcosis 30 ingestion vector/zoonotic 17 222

HIV/AIDS 58 sex, IV drugs direct no temp, rain,

biodiversity, forests

15 491 418

tuberculosis 60 contact direct no biodiversity, forests 8 152 330

typhoid 60 faecal contamination direct 1 853 655

hookworm 42 contact with contaminated

soil

direct no biodiversity 983 123

hepatitis B 60 sex, IV drugs direct no temp, rain,

biodiversity, forests

594 729

measles 60 contact direct no temp, rain,

biodiversity, forests

581 949

ascariasis 43 ingestion direct no biodiversity 492 865

pertussis 60 contact direct no temp, rain,

biodiversity, forests

480 554

whipworm 39 ingestion direct no biodiversity 427 150

hepatitis A 60 contact, faecal contamination direct no biodiversity 401 122

varicella 60 contact direct no temp, rain,

biodiversity, forests

95 151

hepatitis C 60 IV drugs direct no temp, rain,

biodiversity, forests

69 080

diphtheria 60 contact direct no biodiversity, forests 15 247

leprosy 60 contact direct no biodiversity 519
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lymphatic filariasis all had negative associations with popu-

lation density, were more burdensome in the Old World, and

were more burdensome in warmer countries. Diphtheria

shared these associations but also was less burdensome in

urbanized countries, and cysticercosis shared these asso-

ciations but was additionally less burdensome in forested

countries and more burdensome in countries with high levels

of biodiversity. These five diseases formed the first of three

clusters. In the second cluster were most of the directly trans-

mitted diseases, including tuberculosis, leprosy, HIV/AIDS,

pertussis, measles, hookworm, hepatitis A, hepatitis B,
varicella and hepatitis C, along with two zoonoses: dengue

and rabies. These diseases had strong negative associa-

tions with urbanization. The final cluster contained two

geo-helminth diseases (ascariasis, whipworm), one directly

transmitted disease spread by faecal contamination (typhoid),

and the remaining zoonoses (leishmaniasis, echinococcosis,

food-borne trematodiases, Chagas disease). The geo-helminth

diseases were positively associated with precipitation and the

others were positively associated with biodiversity.

Disease burden and its putative drivers changed over time.

As reported at the global scale by Murray et al. [51], DALYs per
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Figure 1. Standardized regression coefficients from PLS-SEM full models (including all pathways except those deemed to be illogical from first principles; table 1)
and pruned models (including only those pathways that were significant) for each of the 24 infectious diseases in the (a) spatial and (b) temporal analyses. The top
box indicates the interactions among the drivers, where the rows are independent variables and the columns are dependent variables. Values are standardized
regression coefficients and colours correspond to coefficient values (red, negative; blue, positive). Diseases are sorted into two groups (zoonoses þ vector-borne
diseases versus non-zoonoses) and by descending total global DALYs in the included countries in 2010 within those two groups. Drivers are sorted left from
right by their tendency for positive (blue) or negative (red) coefficients in space. The bottom boxes show the direct effects of a driver on disease burden. In
the full model panel, blank cells indicate untested associations assumed to be zero based on first principles. An underlined disease is one for which there
was not a significant reduced model as determined by the adjusted R2 (shown at right). The pruned model panel shows results after performing a model selection
process in which any coefficient with an associated p-value , 0.10 was removed and the model re-run. Bold-font coefficients are significant.
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100 000 persons declined between 1990 and 2010 (paired t-test:

t59 ¼ –3.8652, p ¼ 0.0006; figure 3i). The satellite-derived

forest cover metric and the FAO forest cover metric were
strongly associated with one another in both 1990 (t58 ¼

18.28, p , 0.0001) and 2010 (t58 ¼ þ15.28, p , 0.0001).

Between 1990 and 2010, forest cover remained stable at the
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Figure 2. Clustering diseases by their associated drivers in the (a) spatial and (b) temporal analysis. This figure was produced by hierarchical Ward clustering based
on the standardized regression coefficients in figure 1, where we assumed that illogical drivers had a coefficient ¼ 0.
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global level for both satellite-derived (paired t-test: t59 ¼

–0.8553, p ¼ 0.3959; figure 3a) and FAO (paired t-test: t59 ¼

–1.4289, p ¼ 0.1583; figure 3b) forest cover metrics; however,

this pattern conceals substantial variability among individual

countries. Countries underwent change in forest area (absolute

change in forest area . 0 for satellite-derived (one sample

t-test: t59 ¼ þ5.8688, p , 0.0001) and FAO (one sample t-test:

t59 ¼ þ5.0320, p , 0.0001) forest data), but these increases

and decreases cancel one another out at the global level. GNI

(paired t-test: t59 ¼ 14.7734, p , 0.0001; figure 3c), healthcare

spending (paired t-test: t59 ¼ 15.1876, p , 0.0001; figure 3d ),

population (paired t-test: t59 ¼ 10.5706, p , 0.0001; figure 3e),

proportion of population in cities (paired t-test: t59 ¼ 6.2393,

p , 0.0001; figure 3f), average precipitation (paired t-test:

t59 ¼ 3.7101, p ¼ 0.0005; figure 3g) and average temperature

(paired t-test: t59 ¼ 19.8232, p , 0.0001; figure 3h) increased

over time.

There were fewer significant temporal associations than

spatial associations. This is, in part, because there was less tem-

poral than spatial variation in disease burden and drivers. In

the only interaction among temporal drivers (figure 1b, top

panels), increasing forestation was associated with increasing

biodiversity (but this was due, at least in part, to how we

calculated biodiversity change). Three diseases lacked a

single significant driver in the pruned model, and 14 had

only one or two significant drivers (figure 1b, lower right

panel). Change in wealth, urbanization and population had

strong associations with change in disease burden. Urbaniz-

ation change was negatively associated with change in

burden of six diseases, wealth change was negatively associ-

ated with six diseases (and positively associated with one,

HIV/AIDS), and population change was positively associated

with eight diseases (and negatively associated with three). Dis-

ease burden tended to increase as temperature increased for

six diseases, but it declined as disease burden increased for
three other diseases. Precipitation, forestation and biodiversity

change had few significant associations with disease burden.

Disease burden increased as precipitation increased for two

of the geo-helminth diseases (ascariasis, whipworm) and the

water-borne disease schistosomiasis. Increasing biodiversity

was associated with increasing disease burden of food-borne

trematodiases and decreasing disease burden of lymphatic

filariasis. As indicated by the adjusted R2, the PLS-SEMs

explained significant variance for lymphatic filariasis,

dengue, rabies, leishmaniasis, cysticercosis, tuberculosis, hook-

worm, measles, ascariasis, whipworm, hepatitis A, varicella

and leprosy.

In the temporal analysis, path models for disease

change clustered into three broad groups (figure 2b).

Diseases in the first cluster were united by generally weak

associations with most drivers, with some responding

positively to population density and precipitation

(malaria, hepatitis B, Chagas disease, hepatitis C, tuberculo-

sis, rabies, hepatitis A, leishmaniasis, schistosomiasis,

whipworm, ascariasis). Within this first cluster, rabies, leish-

maniasis and hepatitis A shared a negative association with

increasing wealth, and schistosomiasis, whipworm and

ascariasis shared a positive association with increasing

precipitation. The second cluster increased as population

density and temperature increased (lymphatic filariasis,

cysticercosis and echinococcosis). The third cluster contained

many of the directly transmitted diseases (typhoid, leprosy,

HIV/AIDS, pertussis, hookworm, measles, diphtheria and

varicella) along with a few zoonoses (dengue, food-borne

trematodiases) and tended to decrease as urbanization

increased. The two zoonoses in this group decreased as

temperature increased.

Comparing the output of the temporal and spatial PLS-

SEMs for urbanization, wealth, precipitation, temperature,

population and biodiversity, there was some agreement
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between the net effects in space and time, with departures

from agreement suggesting ‘hidden’ effects of the putative

drivers (i.e. effects that are not detectable without data from

multiple time points; figure 4). Countries with high biodiver-

sity tended to have higher disease burdens ( p , 0.0001;

table 2), but increasing biodiversity over time had a non-

significant negative effect on disease burden ( p ¼ 0.2214;

table 2). There was no net forest cover association with dis-

ease burden in the spatial analysis ( p ¼ 0.4729; table 2), but

countries with increasing forest cover experienced increases

in disease burden ( p ¼ 0.0081; table 2). Urbanization had

the strongest and most straightforward effect of all the puta-

tive drivers: urbanized countries had less disease in the

spatial analysis ( p , 0.0001; table 2) and increasing urbaniz-

ation was associated with declining disease burden over

time ( p ¼ 0.0094; table 2). Densely populated countries had

less disease than countries with sparse populations in the

spatial analysis ( p ¼ 0.0259; table 2), but increasing popu-

lation had a non-significant positive association with

change in disease burden over time ( p ¼ 0.0552; table 2).

Wealthy countries had less disease ( p , 0.0001), but increas-

ing wealth did not correlate with disease change over

time ( p ¼ 0.1981; table 2), although it was an important effect

for many diseases individually (figure 1b). Countries with

warmer climates had more disease than countries with cooler

climates ( p ¼ 0.0030), but increasing temperature did not pro-

duce increases in disease burden (p ¼ 0.3256; table 2),

although—again—it was an important effect for many

diseases individually (figure 1b). Precipitation had neither
spatial ( p ¼ 0.2050) nor temporal ( p ¼ 0.1535; table 2)

associations with disease burden.
4. Discussion
This analysis supports the importance of demography and

economics in determining infectious disease outcomes at

the country level (e.g. [14]), and suggests that environmental

factors such as forestation and biodiversity are unlikely to be

general levers for disease control. Although there were sub-

stantial differences among diseases in the putative drivers

associated with the spatial distribution of disease burden

and change in burden over time, there were some asso-

ciations that held across many diseases. We consider the

advantages and disadvantages of country-level analyses,

the relationships among the putative drivers, and the impor-

tance of each driver in determining disease burden, and end

by identifying commonalities among disease agents.

Country-level analyses facilitate global-scale insight but

have important constraints. One limitation is that countries

vary by many orders of magnitude in size, and both ecologi-

cal and economic processes might operate differently in small

versus large countries. To avoid mixing scales—and possibly

losing the ability to detect important patterns—we limited

our analysis to 60 intermediate-sized countries (more than

30% of all countries). This approach sidesteps the ‘ecological

fallacy’, a possible source of error in country-level analyses.

However, it also limits scope of inference, making our results

http://rstb.royalsocietypublishing.org/
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Table 2. Results of PLS-SEM.

parameter

spatial temporal

estimate s.e. z p-value estimate s.e. z p-value

forestation 20.0338 0.0471 20.7177 0.4729 0.1467 0.0554 2.6463 0.0081

biodiversity 0.2474 0.0428 5.7828 ,0.0001 20.1010 0.0826 21.2227 0.2214

urbanization 20.1589 0.0342 24.6391 ,0.0001 20.0958 0.0369 22.5976 0.0094

population 20.0791 0.0355 22.2271 0.0259 0.1004 0.0524 1.9175 0.0552

wealth 20.1383 0.0322 24.2889 1.80 � 1025 20.0574 0.0446 21.2870 0.1981

temperature 0.1931 0.0652 2.9632 0.0030 0.0561 0.05703 0.9830 0.3256

precipitation 20.0762 0.0601 21.2674 0.2050 0.0478 0.0335 1.4272 0.1535
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relevant only for intermediate-sized countries. Although it is

unfortunate that we could not include large countries in our

analysis, especially considering that they contain the bulk

of the world’s people, biodiversity and forest, we believe that

including large countries might have obscured patterns and

biased results (see above). Countries that were excluded for

reasons other than size were those where data were sparse—

including many Soviet bloc (Belarus, Estonia, Georgia,

Hungary, Latvia, Lithuania, Poland, Russian Federation,

Serbia, Slovakia and Slovenia) and Eastern European nations

(Bosnia/Herzegovina, Croatia, Czech Republic, Macedonia,

Montenegro and Serbia), along with countries experien-

cing political upheaval or repression around the year 1990

(Cambodia, Democratic Republic of the Congo, Liberia,
Myanmar, North Korea and Timor-Leste). Because these

countries were not included in our analysis, our conclusions

cannot be extrapolated to Eastern Europe or to countries

experiencing active conflict. Our approach does, however,

allow us to examine the relationships between putative drivers

and disease outcomes for other nations at the scale most

relevant for policy-making: the country level.

Structural equation models allowed us to account for

collinearity and investigate relationships among drivers. In

short, many factors were associated with the high disease

burden observed in tropical countries. Low-latitude nations

were poorer, warmer and possessed greater biodiversity

than high-latitude nations, consistent with well-known epi-

demiological and biogeographic patterns. People in wealthy

http://rstb.royalsocietypublishing.org/
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nations were also more likely to live in cities, an effect that

appears to reduce disease, contrary to the intuition that

increasing human density driven by urbanization should

increase disease transmission (see below). Furthermore,

through the direct effects indicated by the coefficients in

figure 1, we can also estimate indirect and total effects for each

driver. For instance, although there was no significant direct

association between precipitation and leishmaniasis, an indirect

negative association between precipitation and leishmaniasis

(–0.18) can be estimated by multiplying the direct association

between precipitation on forestation (þ0.53) and the direct

association between forestation on leishmaniasis (–0.34).

Both the spatial and temporal analyses identified a negative

association between urbanization and disease (figure 4), as did

our parallel generalized linear mixed model panel analysis

(electronic supplementary material, S4). This result contradicts

the common expectation that urbanization should increase the

risk of disease outbreaks (e.g. [15,71]). Urbanization might

reduce disease by increasing sanitation through enhanced

availability of sewers and water distribution systems, reducing

distance to medical facilities, allowing public health campaigns

(e.g. spraying for mosquitoes, mass drug administration, vacci-

nation) to be carried out more efficiently and effectively,

facilitating the transfer of public health information or separ-

ating human populations from disease vectors and reservoirs

living in forested areas. That urbanization might reduce dis-

ease is good news for a world that is rapidly urbanizing [72].

Population density had a less straightforward association

with disease burden. In the spatial analysis, more densely

populated countries had lower disease burdens, but the tem-

poral analysis suggested a non-significant increase in disease

with increasing population density. Within the temporal

analysis, eight diseases increased with increasing population

density, but two highly infectious directly transmitted dis-

eases (measles and varicella) decreased in burden with

increasing population density. This finding runs counter to

predictions based on density-dependent disease transmission

[17]. For some diseases, this could arise due to an encounter-

dilution effect; that is, if the number of infectious propagules

is held constant or increases less rapidly than does host popu-

lation density, then increasing population density can dilute

per capita risk [73]. This mechanism would be most likely to

operate for zoonoses or vector-borne diseases because zoo-

notic propagules or infected vectors are at least to some

extent independent from human density. In our study, this

mechanism could explain the negative association between

burden of Chagas disease and population density. For the

directly transmitted diseases such as measles and varicella,

contacts might not increase linearly with host density because

contact rates with new susceptibles saturate as density

increases; this pattern has been posited on theoretical

grounds [20] and supported by experiments [74] and the

observation that the number of zoonotic disease outbreaks

per capita declines with increasing population density in

Asia [7] (see our re-analysis in the electronic supplementary

material, S6). Furthermore, DALYs measure health impacts,

which could also vary with population density. For instance,

healthcare might be more effective where people are concen-

trated, reducing disease burden due to complications from

infection [75]. In sum, our results for the demographic drivers

suggest that global trends toward increasing urbanization

might, counterintuitively, bring reductions in disease

burden, at least for long-established human diseases.
Economic factors were also important in determining

disease burden. Wealth, which reflects per capita GNI, was

negatively associated with seven diseases in the spatial analysis

and six diseases in the temporal analysis. This pattern might

arise from the improvements in sanitation, healthcare infra-

structure and transportation that accompany economic

growth, and it might be reinforced where disease burden

impairs economic growth [11]. Only one disease diverged

from this pattern: although HIV/AIDS was less burdensome

in wealthier countries, it increased in association with increas-

ing wealth in the temporal analysis. This might be due to

reversed causation, where increasing HIV/AIDS triggers

increased foreign aid to healthcare programmes designed to

reduce disease transmission. This change could also be due

to increased surveillance and reporting made possible by

increased wealth. For instance, studies on disease outbreaks

per country (from the GIDEON database) often find a positive

relationship with wealth, presumably due to better reporting

and surveillance with increasing wealth [7,8]. Another possible

interpretation is that a time lag between economic growth and

disease burden obscures their relationship. However, the most

plausible explanation for this unexpected pattern is that the

poorest countries simultaneously possess the heaviest HIV/

AIDS disease burden and the greatest potential proportional

change in wealth; that is, for the poorest countries, even a

small absolute change in wealth is a large proportional change.

Hotter countries had a greater disease burden than cooler

countries (figure 1a), but change in temperature was not sig-

nificantly associated with change in disease burden. In the

temporal analysis, increasing temperature had significant

positive associations with six diseases, and significant negative

associations with three diseases (figure 1b). This is consist-

ent with the expectation that changing climate might either

increase or decrease disease burden, depending on the disease

agent: its transmission strategy, life cycle requirements, host

distributions and nonlinear effects of temperature on physio-

logical performance [28]. For example, increasing temperature

might create benign environmental conditions that increase

vector abundance (e.g. [76]), or it might create harsh environ-

mental conditions that exceed the thermal optimum of vectors

or parasite infectious stages, or increase evaporation and there-

fore desiccation. Although our data do not support a strong

role for climate change in infectious disease burden, relation-

ships between disease and climate are best assessed at local

scales, due to the nonlinear responses of disease to temperature

and because climate can vary substantially within a country

[77]. In other words, our analysis should not imply that diseases

do not respond to climate, only that we have not seen a

general global climate change effect on disease between 1990

and 2010.

Rainfall showed little net association with overall disease

burden (figure 4), largely because it had variable associations

across disease agents, with some negatively associated and

others positively associated. In the spatial analysis, wetter

countries had higher burdens of the three geo-helminth

diseases (hookworm, whipworm and ascariasis; figure 1a), per-

haps because geo-helminth eggs must embryonate in moist soil

before they are competent to infect another human host. Increas-

ing precipitation over time increased the burden of ascariasis

and whipworm, as well as schistosomiasis, possibly because

increased rainfall increases run-off of human waste carrying

schistosome eggs, delivering eggs to freshwaters where they

can infect intermediate host snails (figure 1b). On the other
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hand, rain had strong negative effects on diseases such as echi-

nococcosis (figure 1a,b), perhaps because run-off removes

Echinococcus eggs from the terrestrial habitats where they

might be encountered by intermediate hosts.

As we observed with rainfall, associations between dis-

eases and biodiversity were mixed. Countries with more

biodiversity per unit area also had greater disease burdens,

and increasing biodiversity over time was associated with a

non-significant decrease in disease across the disease agents

(figure 4), primarily driven by the strong negative response

of lymphatic filariasis to increasing biodiversity. The finding

that disease is concentrated in biodiverse countries is not

new (e.g. [6]), but our analysis is the first to assess the associ-

ation between biodiversity and disease over time, and it fills

an important gap: of all the studies to date that have tested

the effects of conservation on human well-being, only 2%

address infectious disease [44]. This part of the analysis also

reveals a previously hidden effect of biodiversity. To date, all

analyses relating biodiversity to human disease burden have

used data from only a single time point; our analysis shows

that this could be misleading (figure 4), because spatial and

temporal patterns diverge strongly for biodiversity. This

could suggest that the degree of ‘native’ biodiversity in a

country determines the baseline burden of infection (with

high-biodiversity areas experiencing higher burdens than

low-biodiversity areas), and biodiversity loss modulates that

baseline level (via dilution or amplification effects). However,

our results find no general, large-scale dilution effect across dis-

ease agents. Instead, the data suggest that disease agents are

generally unresponsive to changes in biodiversity: only two

diseases of 24 retained biodiversity as a significant driver of

disease burden in temporal models, and the effect was positive

for one disease (food-borne trematodiases) and negative for the

other (lymphatic filariasis; figure 1b). Just as for climate effects,

relationships between biodiversity and disease transmission

are local-scale phenomena that can be swamped, or even

reversed, by other processes at larger spatial scales [78].

Although we cannot assess local-scale relationships, it seems

clear (and in contrast to past studies [5,8]) that the hypoth-

esized negative link between biodiversity and disease does

not apply generally at the country scale.

Disease burden was similar in heavily forested countries

when compared with lightly forested countries (figure 1a),

but increasing forestation over time was correlated with

increases in disease burden (figure 1b), driven primarily by

lymphatic filariasis and other zoonoses, but also by ascariasis

(a geo-helminth) and leprosy (a directly transmitted disease).

Forest may provide habitat for vectors (e.g. mosquitoes that

carry lymphatic filariasis), create environmental conditions

amenable for parasite development (e.g. moist soil for Ascaris
eggs) or be associated with living conditions that facilitate

close contact (e.g. small communities affected by leprosy).

The fact that lymphatic filariasis is positively associated with

forest and negatively associated with biodiversity suggests a

tension between two forces influencing disease burden:

increasing forest habitat might facilitate vector populations,

while increasing biodiversity might reduce the proportion of

reservoir hosts in the vertebrate population. This tension is

well recognized in the disease ecology literature (e.g.

[21,79,80]), and highlights the difficulty of using conservation

as a public health tool. Given that increasing forestation tends

to increase zoonotic disease burden, forest conservation would

seem to be a win–lose approach to conservation and public
health. As deforestation and forest conservation projects pro-

ceed, potential disease-related advantages or collateral impacts

should be incorporated into cost–benefit analyses [81]; where

collateral impacts are expected, projects should plan for

increased surveillance, prophylaxis and treatment [17], or

better separation between forested areas and human settlements.

It has been posited that parasite life cycles can be used to

predict their response to anthropogenic environmental

changes such as pollution [82], resource extraction [83–86],

global warming [28] and biodiversity loss [22]. In the temporal

dendrogram (figure 2a), several diseases (typhoid, leprosy,

HIV/AIDS, pertussis, hookworm, measles, diphtheria and

varicella) clustered due to similarities in their responsiveness

to urbanization, and the geo-helminths clustered due to

shared association with precipitation. These diseases might

converge in their response to drivers due to their shared trans-

mission strategies, but this is the exception rather than the rule:

most disease responses were idiosyncratic (sensu [34]), and

seemingly similar disease agents often did not respond to the

same drivers. This variability suggests that, although some

general drivers (e.g. urbanization) tend to reduce infectious

disease, we should expect no silver bullet for infectious disease

control; each disease poses a unique challenge to public health.
5. Conclusion
Despite effective medical treatments for most infectious dis-

eases, infection drives global morbidity and death. For the

countries we analysed, infectious disease burdens correlate

with human demography and economics, whereas associations

with environmental and biotic factors are less clear-cut. The oft-

hypothesized negative relationship between biodiversity and

disease was not supported by our data; where biodiversity

change did associate with disease burden change, it had

mixed effects. Most policy decisions are made at a country

level, and our analysis shows that—at this scale—conserving

biodiversity may not be an effective lever for improving

public health. If there is any broad-brush approach that

would simultaneously reduce the burden of multiple infectious

diseases, it appears to be the promotion of urbanization and

economic development.
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