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AN EFFICIENT STRATEGY TO ESTIMATE INTENSITY AND PREVALENCE:
SAMPLING METACERCARIAE IN FISHES

Jenny C. Shaw, Leopoldina Aguirre-Macedo*, and Kevin D. Lafferty†
Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California 93106. e-mail: shaw@lifesci.ucsb.edu

ABSTRACT: Accurate estimates of population-level parameters of parasites, such as prevalence and mean intensity, require large
sample sizes. The processing of such samples becomes an overwhelming task when parasites are abundant, as with trematode
metacercariae in fishes. In the present study, a subsampling method reduced processing time while maintaining an accurate
estimation of metacercariae prevalence and intensity across 3 trematode species and 2 fish species. By double sampling, we
generated regression models to predict total intensity from a combination of subsamples. The key to this approach lies in choosing
the best strategy from a large number of potential subsampling routines. We selected the most efficient routine by weighing the
costs and benefits of each. This approach, however, could not provide an estimate of parasite abundance when no parasites
occurred in the initial subsample. To estimate prevalence accurately, our subsampling algorithm prescribed an additional sampling
sequence using a new, optimal regression model. In addition, we optimized the technique to measure three parasite species
infecting a single host simultaneously. This efficient subsampling procedure decreased the overall processing time per host by
up to 91% while obtaining accurate (R2 . 0.8) estimates for both prevalence and intensity.

Individuals differ greatly in the number of parasites they har-
bor. When parasites are numerous and widely distributed within
the host, comprehensive counts can be extremely tedious, even
after a few hosts. After counting tens of thousands of metacer-
cariae from hundreds of fishes, we wondered if such counts
could be obtained with less effort.

Prevalence (proportion infected), mean intensity (parasites
per infected individual), and mean abundance (parasites per in-
dividuals examined) are 3 common population-level descriptors
of parasite abundance (Bush et al., 1997). The accuracy and
precision of these estimates increases with the number of hosts
examined and with the quality of counts within each host. Such
comprehensive examinations can be extremely time-consuming.
One approach is to sample until the estimate converges on a
stable mean within a predetermined confidence limit as deter-
mined by bootstrapping, jackknifing, or parametric means. A
way to further reduce the time spent per host is to examine
specific tissues or organs (subsamples) rather than the entire
host. An estimate of total intensity can then be extrapolated
from the subsample. This technique sacrifices the accuracy of
the count for individual hosts; however, it ultimately may in-
crease the accuracy of population-level parameters by greatly
increasing the number of hosts that can be sampled in a given
time period.

Estuarine fish that serve as the second intermediate host
to trematode parasites provide an ideal system in which to
apply a subsampling strategy. Several of these trematodes
infect more than one tissue or organ in the fish; furthermore,
these site generalists may be distributed throughout the host,
with mean intensities of several hundred per fish. Difficulties
in evaluating such high intensities are complicated further by
the large sample of hosts needed for accurate measures of
prevalence and mean intensity. To increase the efficiency of
sample processing and, ultimately, the accuracy of popula-
tion-level estimates, we developed a subsampling approach
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The simplest subsampling strategy employs ratios (i.e., the
estimate of total intensity:subsample intensity). For parasitolo-
gists, this usually entails sampling half the bilaterally symmet-
rical organs; the estimate of total intensity would be twice the
subsample intensity. Because there can be a left-side or a right-
side bias in the distribution of parasites (Thiemann and Was-
sersug, 2000), however, it must be demonstrated first that in-
tensity does not vary significantly between the left and right
halves (Graczyk, 1991; Marcogliese et al., 2001). If infected
organs are not bilaterally symmetrical, then one can build a
linear regression model that predicts the total intensity (I) from
1 or a set of tissues in a subsample (S). Building such a re-
gression model requires a sample where both the total count (I)
and the subsample count (S) are obtained from each host. The
process for this approach is called double sampling (Cochran,
1977). Here, the subsample, S, serves as the independent vari-
able, and a least-squares linear regression equation (slope [b]
and intercept [a]) predicts the relationship between I and S in
the standard form

Î 5 bS 1 a (1)

where Î is the predicted value of I for each S. Equation (1),
with values of b and a obtained from the initial sample, S1 and
I1, may permit the estimation of intensity from subsequent sam-
pling efforts or host populations with the same values of b and
a, where S2 is the host subsample from a second population
with unknown I2. The estimation of total intensity in a second
sample (Î2) is based on the assumption that the relationship
between total intensity (I) and the intensity observed in the
subsample (S) is the same for both the initial and subsequent
samples; that is, the regression equation does not differ among
samples (Î2 ø b1S2 1 a1). The larger the proportion of variation
explained by the model (as expressed by the coefficient of de-
termination, R2), then the greater the accuracy of the prediction
of intensity. Subsampling will be an efficient method of gen-
erating an accurate estimate of mean intensity if

2 2R . (4c c )/(c 1 c )t s t s (2)

where ct is the average time to process an entire host and cs is
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the average time to process a subsample (Cochran 1977, p.
341). In addition, this approach assumes that the distribution of
metacercariae among sites within a host does not vary with
intensity (we verify this assumption below).

Most double sampling programs choose a subsampling strat-
egy in advance based on practical reasons or expert opinion.
The strategy is then evaluated (as described above) to determine
if it is more efficient than complete sampling. If several organs
are infected by a parasite, however, then a subsample could
consist of any one organ or combination thereof. Therefore, a
large number of potential subsampling strategies will exist, be-
cause the number of possible combinations (including sampling
all organs) from a list of n organs is 2n 2 1. Subsequently, the
most optimal subsampling strategy may not be readily apparent.
Here, we provide a method to consider trade-offs in sampling
effort and accuracy. This general approach is flexible enough
to be widely applied.

MATERIALS AND METHODS

Animal collection and parasite identification

Seventy-three Clevelandia ios and 116 Fundulus parvipinnis were
seined from Estero de Punta Banda (Ensenada, Baja California) in Oc-
tober 2002 and November 2002. Individuals were bagged according to
species, killed with dissolved CO2, and transported on ice. Fishes were
refrigerated at 4 C for immediate dissection; those not examined within
48 hr were frozen and stored at 220 C. Dissections were performed
with the aid of a dissecting microscope. External structures and internal
organs were removed, squashed, and examined with a compound mi-
croscope for the counting and identification of parasites. Because initial
investigations did not indicate a left- or right-side bias in infection, we
examined only the left side of paired structures (e.g., eyes, gills, pectoral
fins, and lateral musculature), and we doubled the count to estimate the
total intensity for both body parts. We found a high association (least-
squares regression, R2 5 0.94, P , 0.001, n 5 34 body parts) between
predicted (2 3 left) and observed (left 1 right) counts. This bilateral
sampling was done to simplify our approach and reduce effort. How-
ever, it is important to acknowledge that simply by doubling counts of
the left side of bilateral organs, our data underestimate the error in the
estimates, because the actual total count of parasites from a bilateral
organ equals 2 times the left side plus a random error term, and we
have assumed this random error term to be 0.

To determine the efficiency of further subsampling, we assessed all
species of metacercariae infecting both fish hosts. Several species oc-
curred in both fishes. Subsampling seemed to be inappropriate for 4
species, because they inhabited organs that were either difficult to sub-
divide (Phocitremoides ovale and Renicola buchanani in both fishes
and Euhaplorchis californiensis in F. parvipinnis) or had such low in-
tensity that total counts were not cumbersome (Mesostephanus appen-
diculatus in both fishes). Three tissue generalists appeared to be prom-
ising for further subsampling. Stictodora hancocki and an unknown
cyathocotylid species were found in both fish hosts. In addition, Pho-
citremoides sp. occurred in C. ios. For all 3 parasites, intensity did not
alter significantly the distribution of metacercariae among organs, sug-
gesting that a linear regression model was appropriate for predicting
intensity from a subsample; that is, no significant correlations were
found between the intensity and the proportion of metacercariae in a
fish that occurred in a particular organ when compared with a Bonfer-
roni-adjusted P-value for multiple comparisons. All metacercariae were
identified with a compound microscope following descriptions by Mar-
tin (1950a, 1950b) and Yamaguti (1971).

Subsample strategy evaluation

For a given fish species, the number of potential subsampling strat-
egies was calculated by a permutation method for all possible combi-
nations of organs, tissues, or both in which a particular parasite species
was found. The 12 organs we sampled from C. ios provided 4,095
potential subsampling strategies, and the 13 organs we sampled from

F. parvipinnis provided 8,191 potential subsampling strategies. We
evaluated the effort required for each strategy by estimating the pro-
cessing, handling, and counting time needed to examine and analyze an
average infected subsample (excluding uninfected subsamples). Table I
lists the average time required to process each organ for C. ios and F.
parvipinnis. We defined the accuracy, or predictive power, of each pos-
sible subsampling strategy as the percentage of the variation in the total
count explained by the subsample count (R2) for parasites. Our approach
was complicated by the fact that each fish species had more than 1
parasite species (often 2 or more in a particular organ). We wished to
develop a procedure that would sample all parasite species efficiently.
For this reason, the effort for a particular subsampling strategy included
the combined effort to sample each parasite species, and the predictive
power was expressed as the average R2 for each parasite species.

We placed 2 additional constraints on our choice for the most optimal
subsampling strategy. First, we rejected those subsampling strategies in
which less than 60% of the fish had subsamples infected with each
parasite species to avoid choosing a strategy that would yield too many
uninfected subsamples. Second, we placed a higher priority on accuracy
over effort reduction, and we considered only strategies with a mini-
mum R2 of 0.80. We expressed the efficiency (E) of a subsampling
strategy by rearranging Equation 2 so that E 5 R2(ct 1 cs)2/(4ctcs), where
the subsampling was more efficient than complete sampling if E . 1.
Assessing efficiency for up to 8,192 combinations created a computa-
tional challenge. As a result, we programmed a spreadsheet to calculate
the efficiency of subsampling a randomly selected combination of or-
gans. Then, we generated more than 50,000 iterations to ensure the
likelihood of evaluating all possible combinations. The subsampling
strategy with the highest efficiency was chosen for each host.

For the most efficient subsampling strategy, we calculated the slope
(b) and intercept (a) as described previously for each parasite species
in each fish species. In addition, we calculated the standard error (SE)
of each estimate of intensity (Sokal and Rohlf, 1981) as

2¯SSEI 1 (S 2 S )1 2 1ˆSE of I 5 1 1 12 ! [ ]n 2 2 n SSS11 1

where SSEI1 is the sum of squares error of I1, or S(I1 2 Î1)2 and SSS1 is
the sum of squares of S1, or S(S1 2 S̄1)2. To estimate the standard error
from a sample of several fish, we calculated the mean and variance of
Î2 (where Î2 5 the predicted intensity from a subsample of a subsequent
host population or sampling effort), which approximate the actual mean
and variance of I2 (where I2 5 the actual intensity from a subsequent
host population or sampling effort).

The calculation of slope, intercept, and standard error allowed us to
estimate accurately the intensity from each fish sampled using the most
efficient subsampling strategy. This, however, left us without an esti-
mate for individual fish in which the subsampled organs were unin-
fected. Rather than assuming based on an uninfected subsample that an
entire fish had no parasites, we determined the most efficient sequence
for adding individual organs to the subsample until an infection for each
parasite was observed. The relative benefit of adding a particular organ
was expressed as the ratio of the prevalence divided by the intensity
for a particular organ averaged across parasite species. Again, a regres-
sion equation was fitted to estimate the intensity of a particular host–
parasite combination with every new potential subsampling strategy
(the addition of new organs to the list of independent variables neces-
sitated a different equation). More importantly, this sequential sampling
approach allowed a precise determination of prevalence by requiring
the processor to sample all the organs of an uninfected fish. Finally, we
expressed the relative effort of subsampling as a percentage of the total
time required to process an average infected fish.

Simulation model

We assessed our approach by a simulation model using, for simplic-
ity, the F. parvipinnis samples. We randomly selected (with replace-
ment) 2 groups of 50 fish from the original 116 fish. From the first
group, we calculated regression equations between the subsamples and
originals according to our protocol. We then applied these regression
equations to subsamples from the second group to estimate the total
intensity in the second group. We compared the mean and standard
deviation of the estimate of the second sample with the actual mean
and standard deviation of the second sample. This was repeated 1,000
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times. From the simulations, we calculated the number of times the
estimated mean and 95% prediction limits overlapped the actual value.
We also assessed the degree of association (proportion of the explained
variation) between estimated and actual values.

RESULTS

In a typically infected arrow goby (C. ios) from Estero de
Punta Banda, a total count of the metacercariae of S. hancocki,
P. ovale, and the unknown cyathocotylid species took 134 min
and involved sampling the eyes, gills, orobranchial cavity, liver,
digestive tract, body cavity, pectoral fins, pelvic fin, dorsal fin,
anal fin, caudal fin, brain/head musculature, and body muscu-
lature. Sampling only the left side of the bilateral organs (eyes,
gills, pectoral fins, and body musculature) reduced our pro-
cessing time to 87 min per fish. The most efficient subsampling
strategy consisted of examining only the body cavity, brain/
head musculature, left side of the body musculature, and left
pectoral fin; this approach took 39 min for an average infected
fish (or 29% of the total processing time). The average R2 across
all 3 parasite species was 0.92 (P , 0.001). This was an effi-
cient sampling effort (E 5 1.3). Table II presents slopes, inter-
cepts, and R2 values for the association between subsample and
total counts for each parasite species. For subsamples that were
uninfected by 1 or more parasite species (25% of samples), the
sequence of additional organs was, in order of efficiency, the
pelvic fin, left eye, right gills, digestive tract, orobranchial cav-
ity, caudal fin, dorsal fin, anal fin, and liver.

In a typically infected killifish (F. parvipinnis) from Estero
de Punta Banda, a total count of the metacercariae of S. han-
cocki and the unknown cyathocotylid species took 133 min and
involved sampling the eyes, gills, liver, digestive tract, body
cavity, pectoral fins, pelvic fins, dorsal fin, anal fin, caudal fin,
body musculature, and scales. Sampling only the left-side bi-
lateral organs (eyes, gills, pectoral and pelvic fins, and body
musculature) reduced sampling effort to 80 min per fish. The
most efficient subsample routine consisted of the left eye, the
body cavity, the left pectoral fins, and the scales on the left side
of the fish; this approach took 12 min for an average infected
fish (or 9% of the total processing time). The average R2 across
parasite species for this approach was 0.81 (P , 0.001). The
substantial reduction in time made this a very efficient sampling
strategy (E 5 2.6). Table III presents slopes, intercepts, and R2

for the association between subsample and total counts for each
parasite species. For the 40% of subsamples that were unin-
fected by 1 or more parasite species, the additional infection
sites to examine were, in order of efficiency, the left body mus-
culature, left gills, caudal fin, digestive tract, liver, left pelvic
fin, dorsal fin, and anal fin.

The resampling of our F. parvipinnis data indicated a cor-
respondence between the actual and the predicted values, sug-
gesting that the approach was useful for both species of para-
sites. The 95% prediction limits for the estimation of S. han-
cocki intensity (average of means 5 34.9) overlapped the actual
value (average of means 5 34.7) 99.6% of the time. In addition,
the association between the estimates and the actual values had
an R2 of 0.70 (P , 0.001). The estimated standard deviation
(average of means 5 43.9, n 5 1,000) was correlated with the
actual standard deviation (average of standard deviations 5
46.2; R2 5 0.41, P , 0.001). The 95% confidence limits for
the estimation of intensity for the unknown cyathocotylid spe-
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TABLE IV. Summary of steps for developing a subsampling approach
by double sampling.

Step Procedure

1
2

Collect an initial sample of hosts.
Count the parasites in a host, recording the site(s) of infec-

tion for each.
3
4

Determine the effort (time) for each site of infection.
Determine the number of potential subsampling strategies.

5
6

Build a predictive model for each strategy.
Calculate effort (time cost) and accuracy (R2) for each po-

tential strategy.
7
8

Choose the most optimal subsampling strategy.
Be sure that subsampling is more efficient than complete

sampling.

cies (average of means 5 1,058) overlapped the actual value
(average 5 1,028) 97.4% of the time, with an association of R2

5 0.61 (P , 0.001). The estimated standard deviation (average
5 1,400) was correlated with the actual standard deviation (av-
erage 5 1,502; R2 5 0.56, P , 0.001).

DISCUSSION

Double sampling enables parasitologists to increase the effi-
ciency of subsampling host populations without greatly com-
promising the accuracy and precision of prevalence and mean
intensity estimates. The value of subsampling increases with the
savings in cost (i.e., time required to process a subsample) and/
or an improvement in accuracy of the estimation. These 2 fac-
tors will determine whether total sampling or subsampling gives
the best estimate of mean intensity with a particular effort. Our
results show that subsampling reduced substantially the effort
required to process a sample of fish and to estimate the prev-
alence and intensity of tissue-generalist metacercariae. For fu-
ture samples, this subsampling technique can reduce processing
time by up to 71% for arrow gobies and by up to 91% for
killifish. Despite the reduction in effort, subsample counts still
explained a large proportion of the variation in the total count
for both fish hosts (arrow goby, 92%; killifish, 81%). Table IV
delineates our steps for developing a subsampling technique.

Our approach effectively decreased the effort for estimating
mean intensity of a host population; however, it may not be
suitably accurate for the estimation of intensity in individual
hosts (a matter that depends on R2 and the residual from the
regression line for that host). The intercept (a) often is greater
than zero, meaning the linear regression approach would esti-
mate that all uninfected subsamples have an intensity 5 a. An
alternative is to assume that a 5 0 (forcing the association
through the origin), essentially using a ratio approach. This op-
tion has 2 drawbacks. First, it falsely concludes that if the sub-
sample has no parasites, then the host is always uninfected.
Second, forcing the association through the origin also reduces
the predictive power (decreases the R2) by constraining the best
fit for the regression line. Relying on the initial estimate for
uninfected subsamples would have lead us to conclude incor-
rectly that an entire host was uninfected. We avoided this po-
tential pitfall by increasing the sampling effort until parasites
were found or until the entire uninfected host had been pro-

cessed. Other subsampling techniques may not encounter a
problem with uninfected subsamples.

Infection dynamics will dictate what type of predictive model
can be used when designing a subsampling method. With bi-
laterally symmetrical infection sites, a simple ratio model may
be sufficient for estimating mean intensity (e.g., double the sub-
sample count to obtain total intensity). Asymmetrical or mul-
tiple infection sites will require another method (e.g., the re-
gression model delineated in the present paper). Parasites that
occupy more than 1 organ present an additional complexity in
which several subsampling strategies may be available. With a
linear regression model, these potential strategies can be com-
pared to find the one that maximizes the ratio R2(ct 1 cs)2/(4ctcs).
Furthermore, the efficiency of a proposed model should be eval-
uated before it is employed to ensure that R2 . 4ctcs/(ct 1 cs)2.
Although we were able to fit a linear regression model to sam-
ple up to 3 parasite species in a single host with a unified
approach, initially the most efficient subsampling routine dif-
fered among parasites for each fish host. This indicates that
such time saving methods are species-specific at the host and
parasite levels. We suggest these unique infection patterns dem-
onstrate that tissue generalists do not treat all organs alike and
that their distribution within a particular fish is (host) species-
dependent.

Our linear regression model was developed to increase the
efficiency of sampling large numbers of hosts over the extent
of a long-term study. The targeted host–parasite systems are
found at multiple sites along a large geographic range. A sub-
sampling method generated using data from one site, however,
should not be employed at a different site without verification
that the slopes and intercepts of the regressions do not vary
among sites. This requires a complete examination of an initial
sample of hosts to verify that the relationship between total
intensity (I) and the intensity observed in the subsamples (S) is
the same for both initial and subsequent samples (Î2 ø b1S2 1
a1). Additionally, the model will need to be recalibrated because
of factors such as seasonal variation or the detection of cryptic
parasite species (this method assumes that all species are known
and identified).

In conclusion, subsampling can aid in the examination of a
large number of hosts harboring high-intensity infections. Al-
though choosing an effective subsampling routine becomes a
complex process when considering trade-offs in accuracy and
effort reduction, the optimal strategy may produce long-term
rewards in the form of time saved. Researchers can devote their
additional free time to processing larger sample sizes or other
endeavors (at their discretion).
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